Model-Based RL and Policy Learning

CS 294-112: Deep Reinforcement Learning

Sergey Levine

Class Notes

- 1. Homework 3 due next Wednesday
- 2. Accept CMT peer review invitations
 - These are required (part of your final project grade)
 - If you have not received/cannot find invitation, email Kate Rakelly!
- 3. Project proposal feedback from TAs will be out shortly, please read it carefully!

Overview

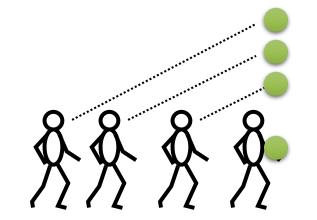
- 1. Last time: learning models of system dynamics and using optimal control to choose actions
 - Global models and model-based RL
 - Local models and model-based RL with *constraints*
 - Uncertainty estimation
 - Models for complex observations, like images
- 2. What if we want a *policy*?
 - Much quicker to evaluate actions at runtime
 - Potentially better generalization
- 3. Can we just backpropagate into the policy?

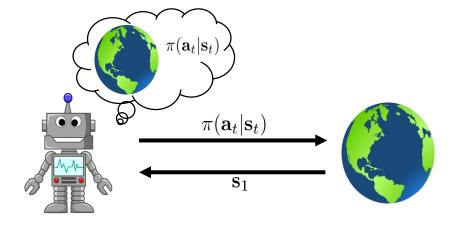
Today's Lecture

- 1. Backpropagating into a policy with learned models
- 2. How this becomes equivalent to *imitating* optimal control
- 3. The guided policy search algorithm
- 4. Imitating optimal control with DAgger
- 5. Model-based vs. model-free RL tradeoffs
- Goals
 - Understand how to train policies guided by control/planning
 - Understand tradeoffs between various methods
 - Get a high-level overview of recent research work on policy learning with modelbased RL

So how can we train policies?

- So far we saw how we can...
 - Train global models (e.g. GPs, neural networks)
 - Train local models (e.g. linear models)
- But what if we want a policy?
 - Don't need to replan (faster)
 - Potentially better generalization
 - Closed loop control!





Backpropagate directly into the policy?

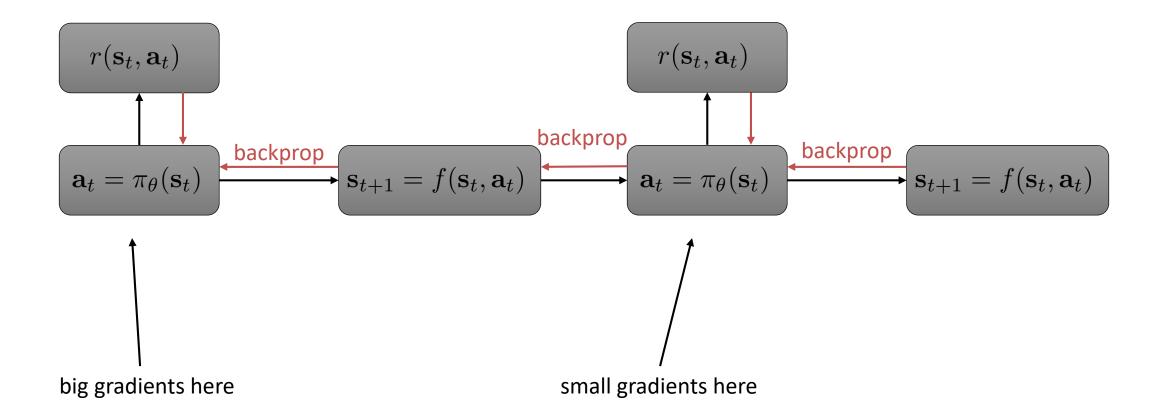


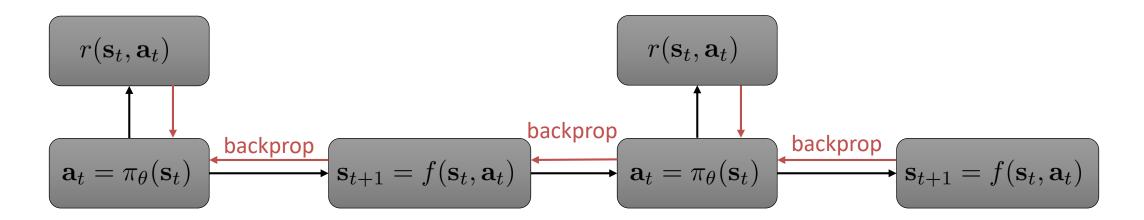
model-based reinforcement learning version 2.0:

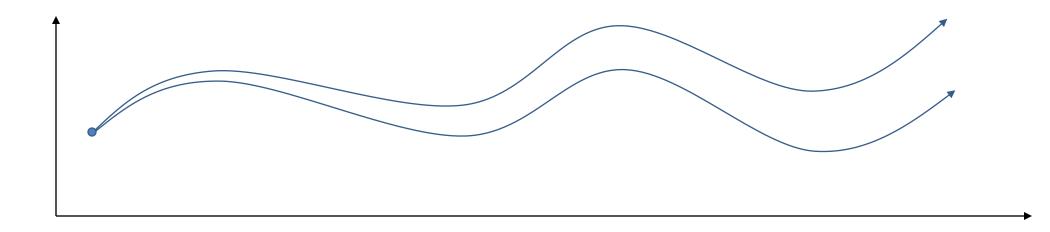
- 1. run base policy $\pi_0(\mathbf{a}_t|\mathbf{s}_t)$ (e.g., random policy) to collect $\mathcal{D} = \{(\mathbf{s}, \mathbf{a}, \mathbf{s}')_i\}$
- 2. learn dynamics model $f(\mathbf{s}, \mathbf{a})$ to minimize $\sum_i ||f(\mathbf{s}_i, \mathbf{a}_i) \mathbf{s}'_i||^2$
- 3. backpropagate through $f(\mathbf{s}, \mathbf{a})$ into the policy to optimize $\pi_{\theta}(\mathbf{a}_t | \mathbf{s}_t)$

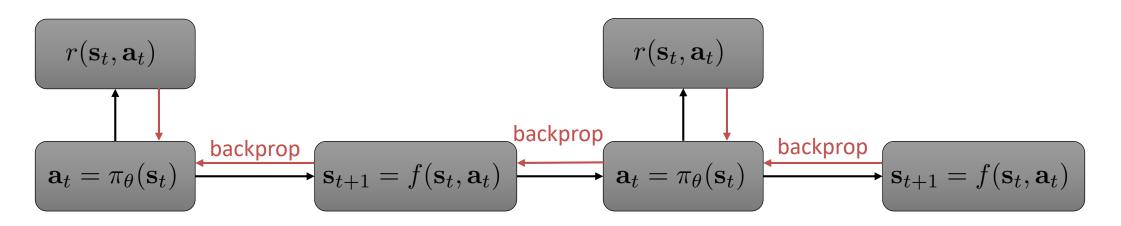
4. run $\pi_{\theta}(\mathbf{a}_t | \mathbf{s}_t)$, appending the visited tuples $(\mathbf{s}, \mathbf{a}, \mathbf{s}')$ to \mathcal{D}

What's the problem with backprop into policy?





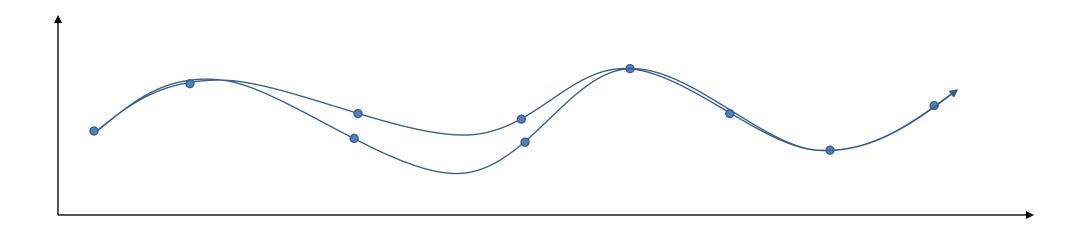




- Similar parameter sensitivity problems as shooting methods
 - But no longer have convenient second order LQR-like method, because policy parameters couple all the time steps, so no dynamic programming
- Similar problems to training long RNNs with BPTT
 - Vanishing and exploding gradients
 - Unlike LSTM, we can't just "choose" a simple dynamics, dynamics are chosen by nature

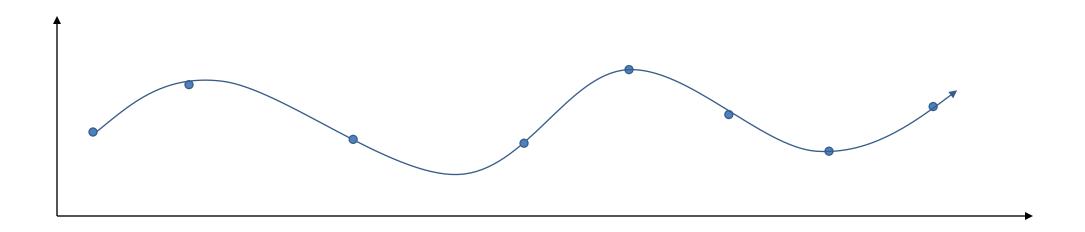
• What about collocation methods?

$$\min_{\mathbf{u}_1,\ldots,\mathbf{u}_T,\mathbf{x}_1,\ldots,\mathbf{x}_T} \sum_{t=1}^T c(\mathbf{x}_t,\mathbf{u}_t) \text{ s.t. } \mathbf{x}_t = f(\mathbf{x}_{t-1},\mathbf{u}_{t-1})$$



• What about collocation methods?

$$\min_{\mathbf{u}_1,\ldots,\mathbf{u}_T,\mathbf{x}_1,\ldots,\mathbf{x}_T,\theta} \sum_{t=1}^T c(\mathbf{x}_t,\mathbf{u}_t) \text{ s.t. } \mathbf{x}_t = f(\mathbf{x}_{t-1},\mathbf{u}_{t-1}), \mathbf{u}_t = \pi_{\theta}(\mathbf{x}_t)$$



Even simpler...

$$\min_{\mathbf{u}_1,\ldots,\mathbf{u}_T,\mathbf{x}_1,\ldots,\mathbf{x}_T,\theta} \sum_{t=1}^T c(\mathbf{x}_t,\mathbf{u}_t) \text{ s.t. } \mathbf{x}_t = f(\mathbf{x}_{t-1},\mathbf{u}_{t-1}) \int_{\mathsf{optimization, solve}} \mathsf{generic trajectory} \mathsf{optimization, solve} \mathsf{however you want} \mathsf{s.t. } \mathbf{u}_t = \pi_{\theta}(\mathbf{x}_t)$$

• How can we impose constraints on trajectory optimization?

Review: dual gradient descent

$$\min_{\mathbf{x}} f(\mathbf{x}) \text{ s.t. } C(\mathbf{x}) = 0$$

$$\mathcal{L}(\mathbf{x},\lambda) = f(\mathbf{x}) + \lambda C(\mathbf{x})$$

$$g(\lambda) = \mathcal{L}(\mathbf{x}^{\star}(\lambda), \lambda)$$

$$\mathbf{x}^{\star} = \arg\min_{\mathbf{x}} \mathcal{L}(\mathbf{x}, \lambda)$$

$$\frac{dg}{d\lambda} = \frac{d\mathcal{L}}{d\lambda}(\mathbf{x}^{\star}, \lambda)$$

1. Find $\mathbf{x}^{\star} \leftarrow \arg \min_{\mathbf{x}} \mathcal{L}(\mathbf{x}, \lambda)$ 2. Compute $\frac{dg}{d\lambda} = \frac{d\mathcal{L}}{d\lambda}(\mathbf{x}^{\star}, \lambda)$ 3. $\lambda \leftarrow \lambda + \alpha \frac{dg}{d\lambda}$

A small tweak to DGD: augmented Lagrangian

$$\min_{\mathbf{x}} f(\mathbf{x}) \text{ s.t. } C(\mathbf{x}) = 0$$

$$\mathcal{L}(\mathbf{x}, \lambda) = f(\mathbf{x}) + \lambda C(\mathbf{x})$$
$$\bar{\mathcal{L}}(\mathbf{x}, \lambda) = f(\mathbf{x}) + \lambda C(\mathbf{x}) + \rho \|C(\mathbf{x})\|^2$$

- Still converges to correct solution
- When far from solution, quadratic term tends to improve stability
- Closely related to alternating direction method of multipliers (ADMM)

1. Find $\mathbf{x}^* \leftarrow \arg\min_{\mathbf{x}} \bar{\mathcal{L}}(\mathbf{x}, \lambda)$ 2. Compute $\frac{dg}{d\lambda} = \frac{d\bar{\mathcal{L}}}{d\lambda}(\mathbf{x}^*, \lambda)$ 3. $\lambda \leftarrow \lambda + \alpha \frac{dg}{d\lambda}$

Constraining trajectory optimization with dual gradient descent

 $\min_{\tau,\theta} c(\tau) \text{ s.t. } \mathbf{u}_t = \pi_{\theta}(\mathbf{x}_t)$

$$\mathcal{L}(\tau, \theta, \lambda) = c(\tau) + \sum_{t=1}^{T} \lambda_t(\pi_\theta(\mathbf{x}_t) - \mathbf{u}_t)$$

$$\bar{\mathcal{L}}(\tau,\theta,\lambda) = c(\tau) + \sum_{t=1}^{T} \lambda_t (\pi_\theta(\mathbf{x}_t) - \mathbf{u}_t) + \sum_{t=1}^{T} \rho_t (\pi_\theta(\mathbf{x}_t) - \mathbf{u}_t)^2$$

Constraining trajectory optimization with dual gradient descent

$$\min_{\tau,\theta} c(\tau) \text{ s.t. } \mathbf{u}_t = \pi_{\theta}(\mathbf{x}_t)$$
$$\bar{\mathcal{L}}(\tau,\theta,\lambda) = c(\tau) + \sum_{t=1}^T \lambda_t (\pi_{\theta}(\mathbf{x}_t) - \mathbf{u}_t) + \sum_{t=1}^T \rho_t (\pi_{\theta}(\mathbf{x}_t) - \mathbf{u}_t)^2$$

1. Find
$$\tau \leftarrow \arg \min_{\tau} \bar{\mathcal{L}}(\tau, \theta, \lambda)$$
 (e.g. via iLQR)
2. Find $\theta \leftarrow \arg \min_{\theta} \bar{\mathcal{L}}(\tau, \theta, \lambda)$ (e.g. via SGD)
3. $\lambda \leftarrow \lambda + \alpha \frac{dg}{d\lambda}$

Guided policy search discussion

1. Find
$$\tau \leftarrow \arg \min_{\tau} \bar{\mathcal{L}}(\tau, \theta, \lambda)$$
 (e.g. via iLQR)
2. Find $\theta \leftarrow \arg \min_{\theta} \bar{\mathcal{L}}(\tau, \theta, \lambda)$ (e.g. via SGD)
3. $\lambda \leftarrow \lambda + \alpha \frac{dg}{d\lambda}$

- Can be interpreted as constrained trajectory optimization method
- Can be interpreted as imitation of an optimal control expert, since step 2 is just supervised learning
- The optimal control "teacher" adapts to the learner, and avoids actions that the learner can't mimic

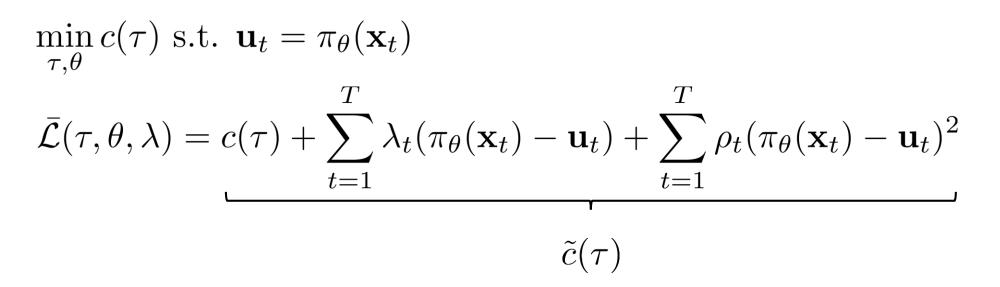
General guided policy search scheme

- \rightarrow 1. Optimize $p(\tau)$ with respect to some surrogate $\tilde{c}(\mathbf{x}_t, \mathbf{u}_t)$
 - 2. Optimize θ with respect to some supervised objective
- **3**. Increment or modify dual variables λ

Need to choose:

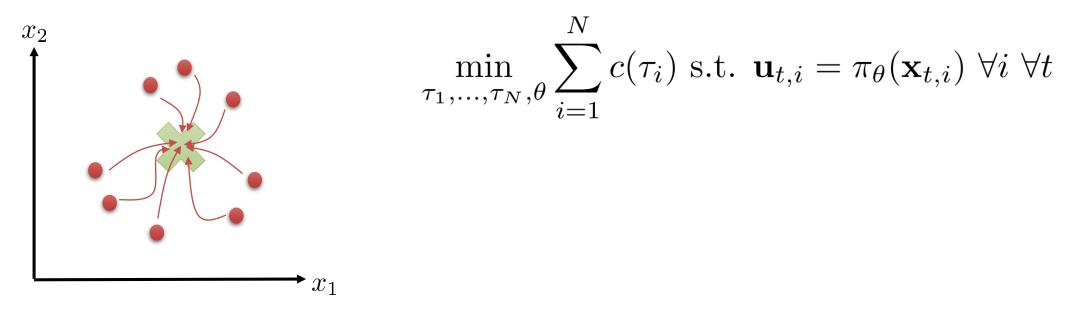
form of $p(\tau)$ or τ (if deterministic) optimization method for $p(\tau)$ or τ surrogate $\tilde{c}(\mathbf{x}_t, \mathbf{u}_t)$ supervised objective for $\pi_{\theta}(\mathbf{u}_t | \mathbf{x}_t)$

Deterministic case



- \rightarrow 1. Optimize τ with respect to surrogate $\tilde{c}(\tau)$
 - 2. Optimize θ with respect to supervised objective
 - **3**. Increment or modify dual variables λ

Learning with multiple trajectories



1. Optimize each τ_i in parallel with respect to c̃(τ_i)
2. Optimize θ with respect to supervised objective
3. Increment or modify dual variables λ

Case study: learning locomotion skills

Interactive Control of Diverse Complex Characters with Neural Networks

Igor Mordatch, Kendall Lowrey, Galen Andrew, Zoran Popovic, Emanuel Todorov Department of Computer Science, University of Washington {mordatch, lowrey, galen, zoran, todorov}@cs.washington.edu

Interactive Control of Diverse Complex Characters with Neural Networks

Submitted to NIPS 2015

Stochastic (Gaussian) GPS

$$\min_{p,\theta} E_{\tau \sim p(\tau)}[c(\tau)] \text{ s.t. } p(\mathbf{u}_t | \mathbf{x}_t) = \pi_{\theta}(\mathbf{u}_t | \mathbf{x}_t)$$

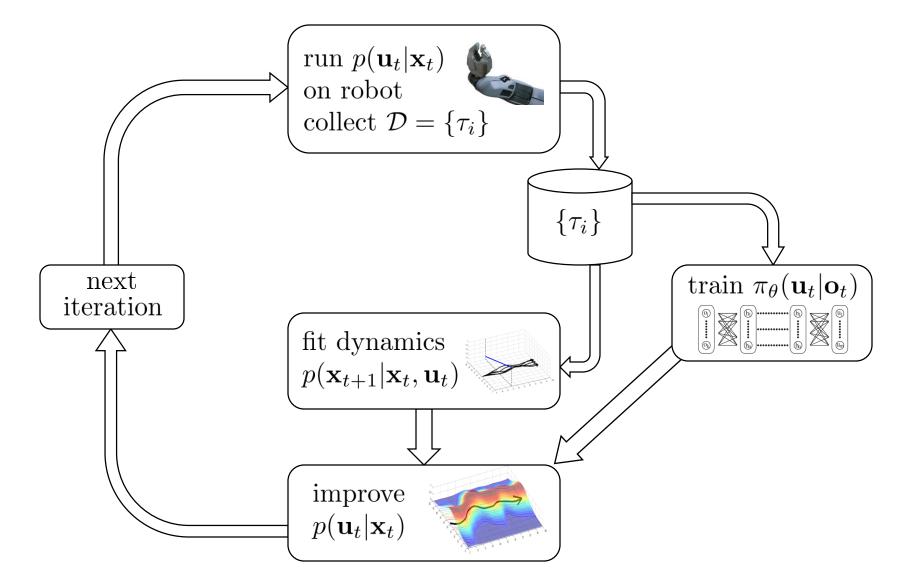
$$p(\mathbf{u}_t | \mathbf{x}_t) = \mathcal{N}(\mathbf{K}_t(\mathbf{x}_t - \hat{\mathbf{x}}_t) + \mathbf{k}_t + \hat{\mathbf{u}}_t, \Sigma_t)$$

$$\int \min_p \sum_{t=1}^T E_{p(\mathbf{x}_t, \mathbf{u}_t)} [\tilde{c}(\mathbf{x}_t, \mathbf{u}_t)] \text{ s.t. } D_{\mathrm{KL}}(p(\tau) || \bar{p}(\tau)) \le \epsilon$$

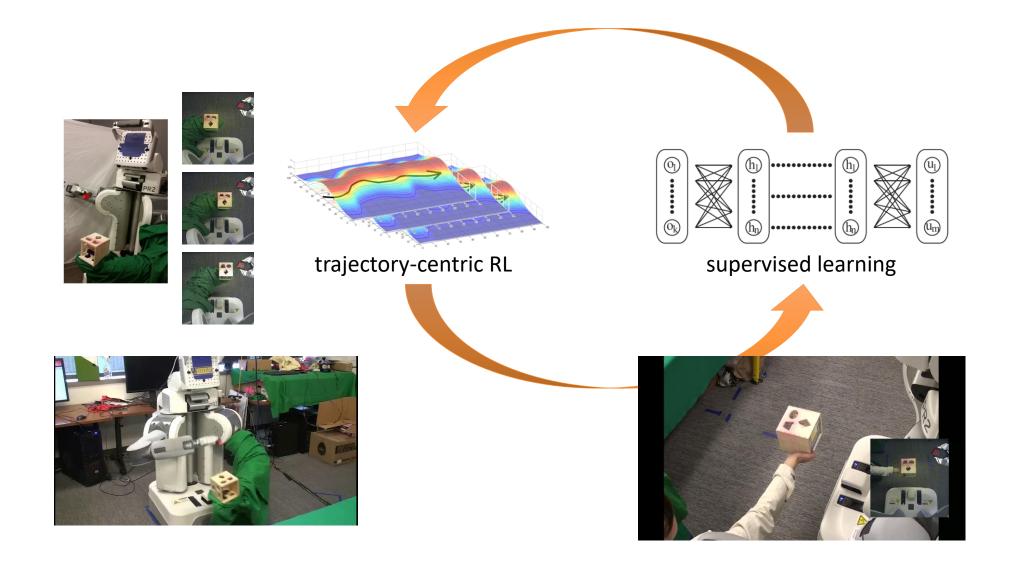
▶ 1. Optimize $p(\tau)$ with respect to some surrogate $\tilde{c}(\mathbf{x}_t, \mathbf{u}_t)$

- 2. Optimize θ with respect to some supervised objective
- **3**. Increment or modify dual variables λ

Stochastic (Gaussian) GPS with local models

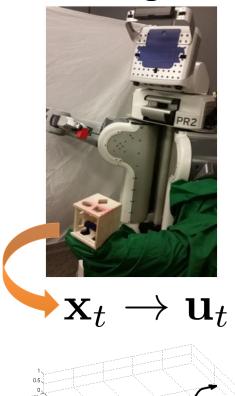


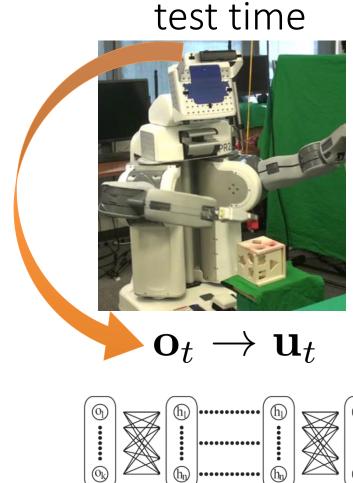
Robotics Example



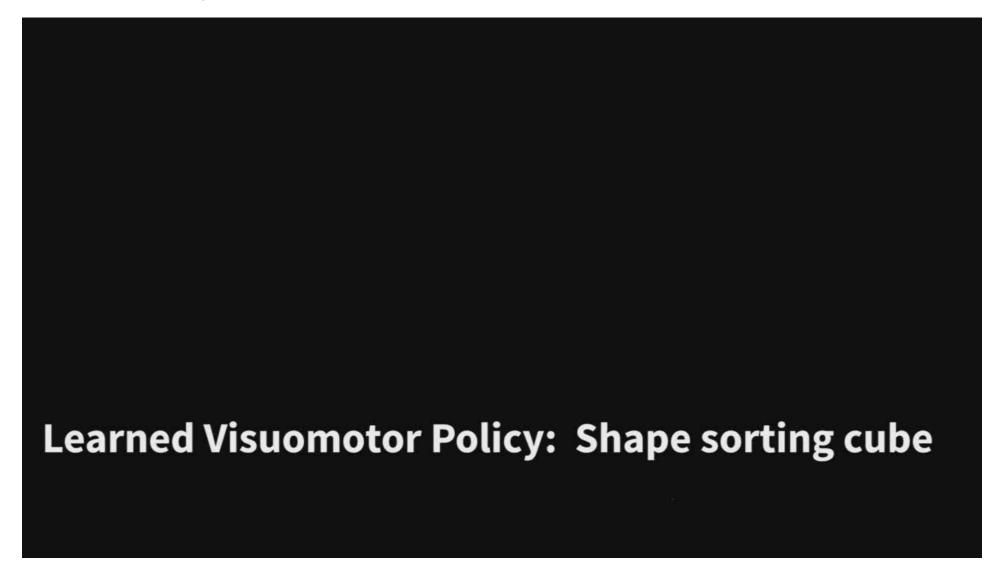
Input Remapping Trick

 $\min_{\substack{p,\theta}} E_{\tau \sim p(\tau)}[c(\tau)] \text{ s.t. } p(\mathbf{u}_t | \mathbf{x}_t) = \pi_{\theta}(\mathbf{u}_t | \mathbf{x}_t)$ training time test time





Case study: vision-based control with GPS



"End-to-End Training of Deep Visuomotor Policies"

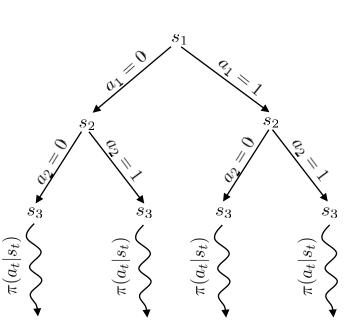
Break

Imitating optimal control with DAgger

Deep Learning for Real-Time Atari Game Play Using Offline Monte-Carlo Tree Search Planning

Xiaoxiao Guo Computer Science and Eng. University of Michigan guoxiao@umich.edu Satinder Singh Computer Science and Eng. University of Michigan baveja@umich.edu

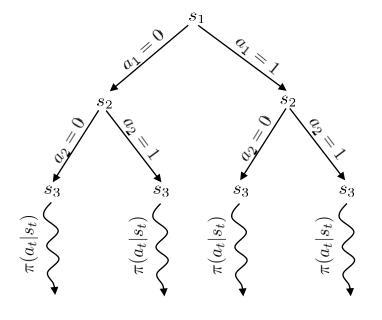
Honglak Lee Computer Science and Eng. University of Michigan honglak@umich.edu Richard Lewis Department of Psychology University of Michigan rickl@umich.edu Xiaoshi Wang Computer Science and Eng. University of Michigan xiaoshiw@umich.edu



Imitating optimal control with DAgger

Deep Learning for Real-Time Atari Game Play Using Offline Monte-Carlo Tree Search Planning

- 1. from current state s_t , run MCTS to get a_t, a_{t+1}, \ldots
- 2. add (s_t, a_t) to dataset \mathcal{D}
- 3. execute action $a_t \sim \pi(a_t | s_t)$ (not MCTS action!)
- 4. update the policy by training on \mathcal{D}



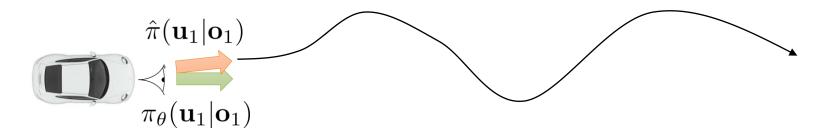
A problem with DAgger

- $\rightarrow 1$. train $\pi_{\theta}(\mathbf{u}_t | \mathbf{o}_t)$ from human data $\mathcal{D} = \{\mathbf{o}_1, \mathbf{u}_1, \dots, \mathbf{o}_N, \mathbf{u}_N\}$
 - 2. run $\pi_{\theta}(\mathbf{u}_t | \mathbf{o}_t)$ to get dataset $\mathcal{D}_{\pi} = \{\mathbf{o}_1, \dots, \mathbf{o}_M\}$
 - 3. Ask hommanteo tobleb $\mathfrak{A}_{\pi}\mathcal{D}_{\mathfrak{F}}$ ithitactions \mathbf{u}_t
- 4. Aggregate: $\mathcal{D} \leftarrow \mathcal{D} \cup \mathcal{D}_{\pi}$

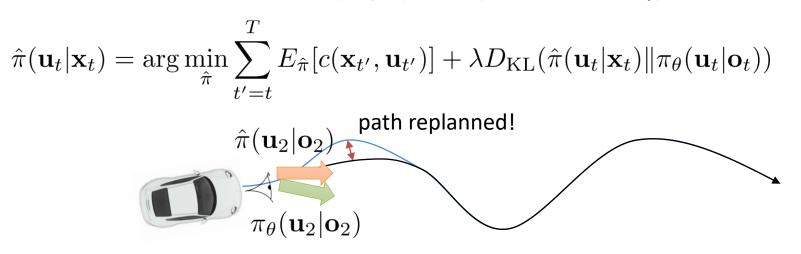
- 1. train $\pi_{\theta}(\mathbf{u}_t | \mathbf{o}_t)$ from human data $\mathcal{D} = \{\mathbf{o}_1, \mathbf{u}_1, \dots, \mathbf{o}_N, \mathbf{u}_N\}$ 2. run $\hat{\pi}_{\theta}(\mathbf{u}_t | \mathbf{o}_{\theta})$ togget dataset $\mathcal{D}_{\pi\pi} = \{\mathbf{o}_1, \dots, \mathbf{o}_M\}$ 3. Ask computer to label \mathcal{D}_{π} with actions \mathbf{u}_t
 - 4. Aggregate: $\mathcal{D} \leftarrow \mathcal{D} \cup \mathcal{D}_{\pi}$

simple stochastic policy: $\hat{\pi}(\mathbf{u}_t | \mathbf{x}_t) = \mathcal{N}(\mathbf{K}_t \mathbf{x}_t + \mathbf{k}_t, \Sigma_{\mathbf{u}_t})$

$$\hat{\pi}(\mathbf{u}_t|\mathbf{x}_t) = \arg\min_{\hat{\pi}} \sum_{t'=t}^T E_{\hat{\pi}}[c(\mathbf{x}_{t'}, \mathbf{u}_{t'})] + \lambda D_{\mathrm{KL}}(\hat{\pi}(\mathbf{u}_t|\mathbf{x}_t) || \pi_{\theta}(\mathbf{u}_t|\mathbf{o}_t))$$



- 1. train $\pi_{\theta}(\mathbf{u}_t | \mathbf{o}_t)$ from human data $\mathcal{D} = \{\mathbf{o}_1, \mathbf{u}_1, \dots, \mathbf{o}_N, \mathbf{u}_N\}$ 2. run $\hat{\pi}(\mathbf{u}_t | \mathbf{o}_t)$ to get dataset $\mathcal{D}_{\pi} = \{\mathbf{o}_1, \dots, \mathbf{o}_M\}$ 3. Ask computer to label \mathcal{D}_{π} with actions \mathbf{u}_t 4. Aggregate: $\mathcal{D} \leftarrow \mathcal{D} \cup \mathcal{D}_{\pi}$
- simple stochastic policy: $\hat{\pi}(\mathbf{u}_t | \mathbf{x}_t) = \mathcal{N}(\mathbf{K}_t \mathbf{x}_t + \mathbf{k}_t, \Sigma_{\mathbf{u}_t})$



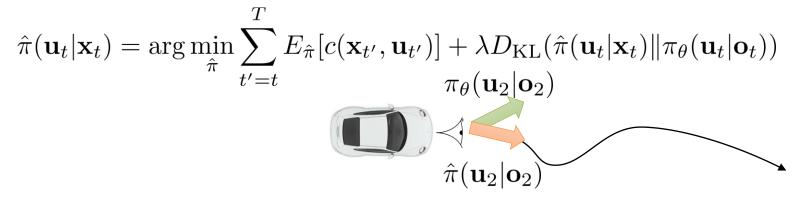
1. train
$$\pi_{\theta}(\mathbf{u}_t | \mathbf{o}_t)$$
 from human data $\mathcal{D} = \{\mathbf{o}_1, \mathbf{u}_1, \dots, \mathbf{o}_N, \mathbf{u}_N\}$
2. run $\hat{\pi}(\mathbf{u}_t | \mathbf{o}_t)$ to get dataset $\mathcal{D}_{\pi} = \{\mathbf{o}_1, \dots, \mathbf{o}_M\}$
3. Ask computer to label \mathcal{D}_{π} with actions \mathbf{u}_t
4. Aggregate: $\mathcal{D} \leftarrow \mathcal{D} \cup \mathcal{D}_{\pi}$

simple stochastic policy:
$$\hat{\pi}(\mathbf{u}_t | \mathbf{x}_t) = \mathcal{N}(\mathbf{K}_t \mathbf{x}_t + \mathbf{k}_t, \Sigma_{\mathbf{u}_t})$$

$$\hat{\pi}(\mathbf{u}_t | \mathbf{x}_t) = \arg\min_{\hat{\pi}} \sum_{t'=t}^T E_{\hat{\pi}}[c(\mathbf{x}_{t'}, \mathbf{u}_{t'})] + \lambda D_{\mathrm{KL}}(\hat{\pi}(\mathbf{u}_t | \mathbf{x}_t) || \pi_{\theta}(\mathbf{u}_t | \mathbf{o}_t))$$
$$\pi_{\theta}(\mathbf{u}_2 | \mathbf{o}_2)$$
$$\hat{\pi}(\mathbf{u}_2 | \mathbf{o}_2)$$

- 1. train $\pi_{\theta}(\mathbf{u}_t | \mathbf{o}_t)$ from human data $\mathcal{D} = \{\mathbf{o}_1, \mathbf{u}_1, \dots, \mathbf{o}_N, \mathbf{u}_N\}$ 2. run $\hat{\pi}(\mathbf{u}_t | \mathbf{o}_t)$ to get dataset $\mathcal{D}_{\pi} = \{\mathbf{o}_1, \dots, \mathbf{o}_M\}$ 3. Ask computer to label \mathcal{D}_{π} with actions \mathbf{u}_t 4. Aggregate: $\mathcal{D} \leftarrow \mathcal{D} \cup \mathcal{D}_{\pi}$
- $\bullet \quad \mathbf{1} \quad \mathbf{1$

simple stochastic policy:
$$\hat{\pi}(\mathbf{u}_t | \mathbf{x}_t) = \mathcal{N}(\mathbf{K}_t \mathbf{x}_t + \mathbf{k}_t, \Sigma_{\mathbf{u}_t})$$



- 1. train $\pi_{\theta}(\mathbf{u}_t | \mathbf{o}_t)$ from human data $\mathcal{D} = \{\mathbf{o}_1, \mathbf{u}_1, \dots, \mathbf{o}_N, \mathbf{u}_N\}$ 2. run $\hat{\pi}(\mathbf{u}_t | \mathbf{o}_t)$ to get dataset $\mathcal{D}_{\pi} = \{\mathbf{o}_1, \dots, \mathbf{o}_M\}$ 3. Ask computer to label \mathcal{D}_{π} with actions \mathbf{u}_t 4. Aggregate: $\mathcal{D} \leftarrow \mathcal{D} \cup \mathcal{D}_{\pi}$
- simple stochastic policy: $\hat{\pi}(\mathbf{u}_t | \mathbf{x}_t) = \mathcal{N}(\mathbf{K}_t \mathbf{x}_t + \mathbf{k}_t, \Sigma_{\mathbf{u}_t})$

$$\hat{\pi}(\mathbf{u}_t | \mathbf{x}_t) = \arg\min_{\hat{\pi}} \sum_{t'=t}^T E_{\hat{\pi}}[c(\mathbf{x}_{t'}, \mathbf{u}_{t'})] + \lambda D_{\mathrm{KL}}(\hat{\pi}(\mathbf{u}_t | \mathbf{x}_t) || \pi_{\theta}(\mathbf{u}_t | \mathbf{o}_t))$$

$$\hat{\pi}(\mathbf{u}_2 | \mathbf{o}_2)$$

 $\pi_{\theta}(\mathbf{u}_2|\mathbf{o}_2)$

Imitating MPC: PLATO algorithm

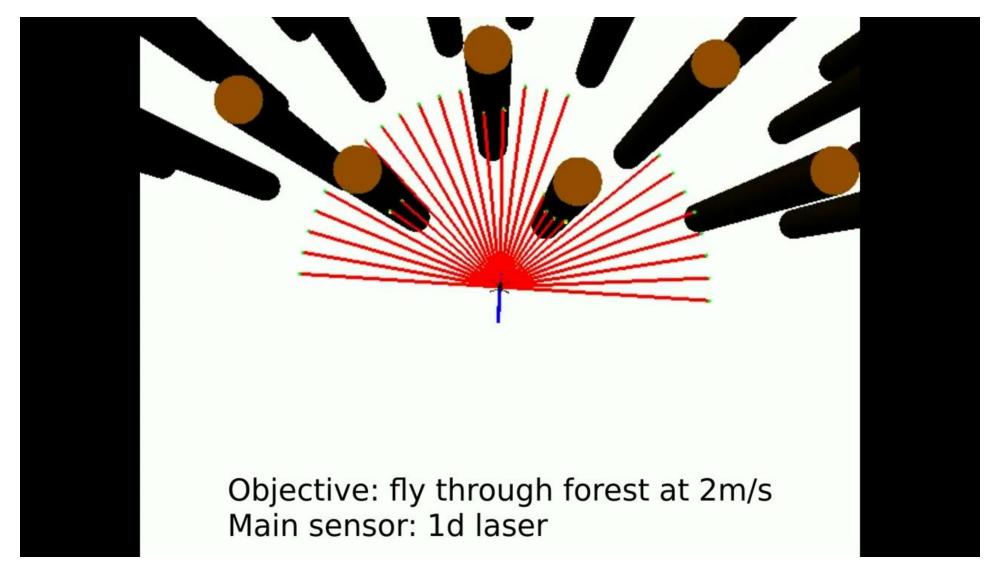
- 1. train $\pi_{\theta}(\mathbf{u}_t | \mathbf{o}_t)$ from human data $\mathcal{D} = \{\mathbf{o}_1, \mathbf{u}_1, \dots, \mathbf{o}_N, \mathbf{u}_N\}$ 2. run $\hat{\pi}(\mathbf{u}_t | \mathbf{o}_t)$ to get dataset $\mathcal{D}_{\pi} = \{\mathbf{o}_1, \dots, \mathbf{o}_M\}$ 3. Ask computer to label \mathcal{D}_{π} with actions \mathbf{u}_t 4. Aggregate: $\mathcal{D} \leftarrow \mathcal{D} \cup \mathcal{D}_{\pi}$
- simple stochastic policy: $\hat{\pi}(\mathbf{u}_t | \mathbf{x}_t) = \mathcal{N}(\mathbf{K}_t \mathbf{x}_t + \mathbf{k}_t, \Sigma_{\mathbf{u}_t})$

$$\hat{\pi}(\mathbf{u}_t | \mathbf{x}_t) = \arg\min_{\hat{\pi}} \sum_{t'=t}^T E_{\hat{\pi}}[c(\mathbf{x}_{t'}, \mathbf{u}_{t'})] + \lambda D_{\mathrm{KL}}(\hat{\pi}(\mathbf{u}_t | \mathbf{x}_t) || \pi_{\theta}(\mathbf{u}_t | \mathbf{o}_t))$$

$$\pi_{\theta}(\mathbf{u}_2 | \mathbf{o}_2)$$

$$\hat{\pi}(\mathbf{u}_2 | \mathbf{o}_2)$$

Imitating MPC: PLATO algorithm



DAgger vs GPS

- DAgger does not require an adaptive expert
 - Any expert will do, so long as states from learned policy can be labeled
 - Assumes it is possible to match expert's behavior up to bounded loss
 - Not always possible (e.g. partially observed domains)
- GPS adapts the "expert" behavior
 - Does not require bounded loss on initial expert (expert will change)

Why imitate?

- Relatively stable and easy to use
 - Supervised learning works very well
 - Control/planning (usually) works very well
 - The combination of the two (usually) works very well
- Input remapping trick: can exploit availability of additional information at training time to learn policy from raw observations
- Overcomes optimization challenges of backpropagating into policy directly
- Usually sample-efficient and viable for real physical systems

Model-free optimization with a model

- Just use policy gradient (or another model-free RL method) even though you have a model
- Sometimes better than using the gradients!
- See a recent analysis here:
 - Parmas et al. '18: PIPP: Flexible Model-Based Policy Search Robust to the Curse of Chaos

Model-free optimization with a model

Dyna

online Q-learning algorithm that performs model-free RL with a model

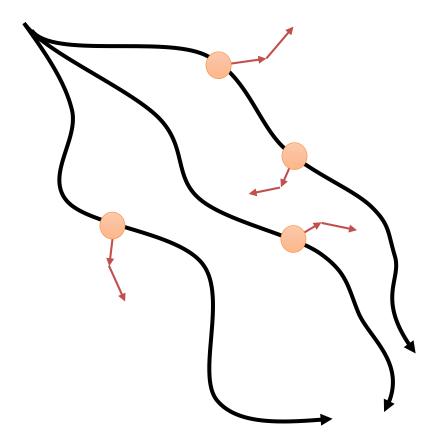
- 1. given state s, pick action a using exploration policy
- 2. observe s' and r, to get transition (s, a, s', r)
- 3. update model $\hat{p}(s'|s, a)$ and $\hat{r}(s, a)$ using (s, a, s')
- 4. Q-update: $Q(s,a) \leftarrow Q(s,a) + \alpha E_{s',r}[r + \max_{a'} Q(s',a') Q(s,a)]$
- 5. repeat K times:
 - 6. sample $(s, a) \sim \mathcal{B}$ from buffer of past states and actions
 - 7. Q-update: $Q(s,a) \leftarrow Q(s,a) + \alpha E_{s',r}[r + \max_{a'} Q(s',a') Q(s,a)]$

Richard S. Sutton. Integrated architectures for learning, planning, and reacting based on approximating dynamic programming.

General "Dyna-style" model-based RL recipe

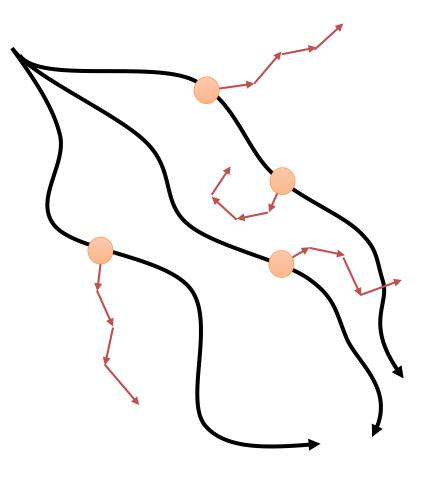
- 1. collect some data, consisting of transitions (s, a, s', r)
- 2. learn model $\hat{p}(s'|s,a)$ (and optionally, $\hat{r}(s,a))$
- 3. repeat K times:
 - 4. sample $s \sim \mathcal{B}$ from buffer
 - 5. choose action a (from \mathcal{B} , from π , or random)
 - 6. simulate $s' \sim \hat{p}(s'|s, a)$ (and $r = \hat{r}(s, a)$)
 - 7. train on (s, a, s', r) with model-free RL
 - 8. (optional) take N more model-based steps

+ only requires short (as few as one step) rollouts from model+ still sees diverse states



Model-Based Acceleration (MBA) & Model-Based Value Expansion (MVE)

- 1. take some action \mathbf{a}_i and observe $(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}'_i, r_i)$, add it to \mathcal{B}
- 2. sample mini-batch $\{\mathbf{s}_j, \mathbf{a}_j, \mathbf{s}'_j, r_j\}$ from \mathcal{B} uniformly
- 3. use $\{\mathbf{s}_j, \mathbf{a}_j, \mathbf{s}'_j\}$ to update model $\hat{p}(\mathbf{s}' | \mathbf{s}, \mathbf{a})$
- 4. sample $\{\mathbf{s}_j\}$ from \mathcal{B}
- 5. for each \mathbf{s}_j , perform model-based rollout with $\mathbf{a} = \pi(\mathbf{s})$
- 6. use all transitions $(\mathbf{s}, \mathbf{a}, \mathbf{s}', r)$ along rollout to update Q-function



Gu et al. Continuous deep Q-learning with model-based acceleration. '16 Feinberg et al. Model-based value expansion. '18

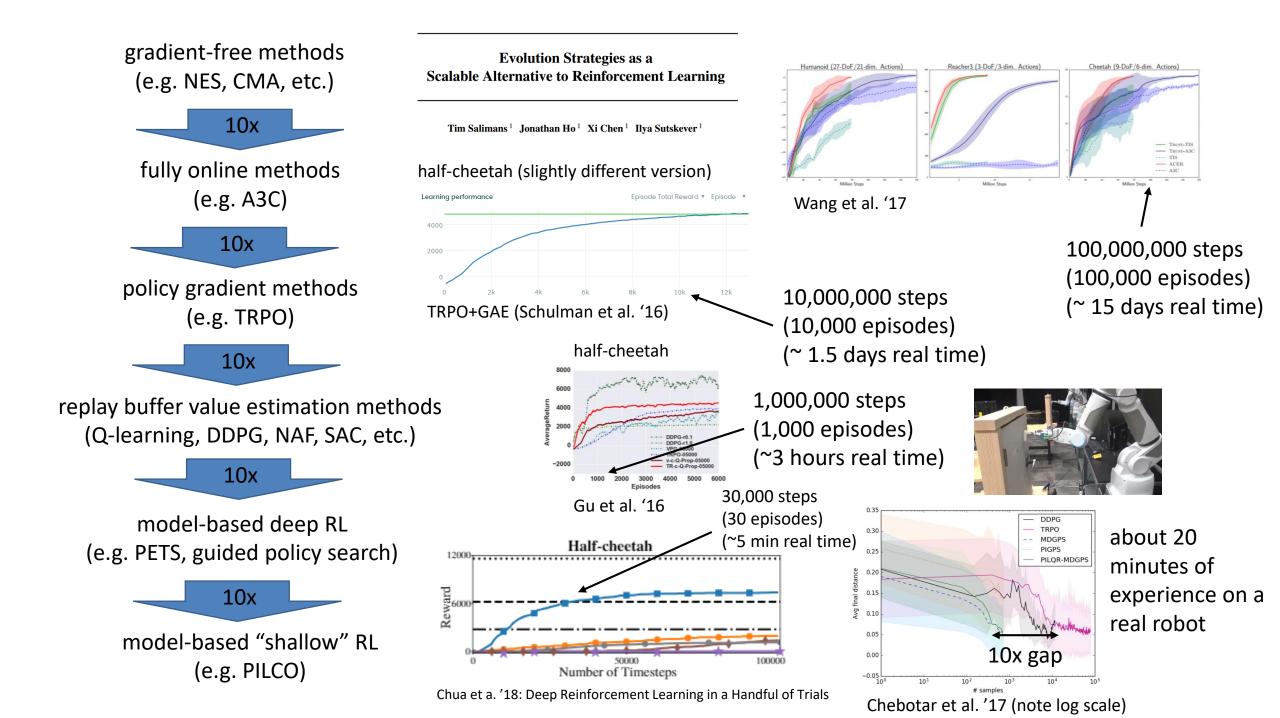
Model-based RL algorithms summary

- Learn model and plan (without policy)
- THIS WILL BE ON HWA! Iteratively collect more data to overcome distribution mismatch
 - Replan every time step (MPC) to mitigate small model errors
- Learn policy
 - Backpropagate into policy (e.g., PILCO) simple but potentially unstable
 - Imitate optimal control in a constrained optimization framework (e.g., GPS)
 - Imitate optimal control via DAgger-like process (e.g., PLATO)
 - Use model-free algorithm with a model (Dyna, etc.)

Limitations of model-based RL

- Need some kind of model
 - Not always available
 - Sometimes harder to learn than the policy
- Learning the model takes time & data
 - Sometimes expressive model classes (neural nets) are not fast
 - Sometimes fast model classes (linear models) are not expressive
- Some kind of additional assumptions
 - Linearizability/continuity
 - Ability to reset the system (for local linear models)
 - Smoothness (for GP-style global models)
 - Etc.

So... which algorithm do l use?



Which RL algorithm to use?

