Advanced Model-Based
Reinforcement Learning

CS 294-112: Deep Reinforcement Learning

Sergey Levine

Class Notes

1. Homework 3 is extended by one week, to Wednesday after next

Today’s Lecture

1. Managing overfitting in model-based RL
 What’s the problem?
* How do we represent uncertainty?

2. Model-based RL with images
* The POMDP model for model-based RL
* Learning encodings
* Learning dynamics-aware encoding

e Goals:

* Understand the issue with overfitting and uncertainty in model-based RL
* Understand how the POMDP model fits with model-based RL
* Understand recent research on model-based RL with complex observations

A performance gap in model-based RL

: Cheetah
6000

5000

4000

3000

2000

1000
= Mb
e | M

—— Mb-Mf (ours)

107 m} 10

Cumulative Reward

0

1000

10 104 5 \ 108

Steps Y

model-free training
(about 10 days...)

pure model-based
(about 10 minutes real time)

Nagabandi, Kahn, Fearing, L. ICRA 2018

Why the performance gap?

Cheetah

6000
2000

4000

3000

2000

1000

Cumulative Reward

= Mb
e | Mf
—— Mb-Mf (ours)

0

1000

10° I 108 10°

, ...but still have high capacity over here
need to not overfit here...

Why the performance gap?

model-based reinforcement learning version 1.5:
1. run base policy m(a;|s;) (e.g., random policy) to collect D = {(s,a,s’);}
2. learn dynamics model f(s,a) to minimize Y || f(s;,a;) — s||*

plan through f(s,a) to choose actions

execute the first planned action, observe resulting state s’ (MPC)

every N steps

AN

append (s,a,s’) to dataset D

very tempting to go here...

Remember from last time...

Learning to Control a Low-Cost Manipulator using
Data-Efficient Reinforcement Learning

Marc Peter Deisenroth Carl Edward Rasmussen Dieter Fox
Dept. of Computer Science & Engineering Dept. of Engineering Dept. of Computer Science & Engineering
University of Washington University of Cambridge University of Washington

Seattle, WA, USA Cambridge, UK Seattle, WA, USA

1. run base policy mg(as|s;) (e.g., random policy) to collect D = {(s,a,s’);}
2. learn GP dynamics model p(s’|s,a) to maximize) . log p(s;|s;, a;)
3. backpropagate through p(s’|s, a) into the policy to optimize 7y (a¢|s;)

4. run 7o (as|s;), appending the visited tuples (s,a,s’) to D

Remember from last time...

3. backpropagate through p(s’|s,a) into the policy to optimize mg(a;|s;)

Given p(s;), use p(s’[s,a) to compute p(s;11)
If p(s;) is Gaussian, we can get a (non-Gaussian) p(s;11) in closed form

Project non-Gaussian p(s;y1) to Gaussian p(s;11) using moment matching

FEs ps)[7(8)] easy if r is nice and p(s) Gaussian

Write), Esp(s,)7(s¢)] and differentiate

Why are GPs so popular for model-based RL?

20 :
flz)= zsin(zx)
® # Observations
— Prediction
mEm 95% confidence interval

15 H

expected reward under high-variance prediction
is very low, even though mean is the same!

Intuition behind uncertainty-aware RL

model-based reinforcement learning version 1.5:
1. run base policy m(a¢|st) (e.g., random policy) to collect D = {(s,a,s’);}
2. learn dynamics model f(s,a) to minimize Y || f(s;,a;) — s||*

plan through f(s,a) to choose actions

execute the first planned action, observe dgulting state s’ (MPC)

every N steps

AN S

append (s, a,s’) to dataset D

only take actions for which we think we’ll get high
reward in expectation (w.r.t. uncertain dynamics)

This avoids “exploiting” the model

The model will then adapt and get better

There are a few caveats...

Need to explore to get better
Expected value is not the same as pessimistic value
Expected value is not the same as optimistic value

...but expected value is often a good start

How can we have uncertainty-aware models?

ldea 1: use output entropy

l- m
b(s1) >

) p(SQ p(SS St41

why is this not enough?

Two types of uncertainty:

aleatoric or statistical uncertainty — °

A

epistemic or model uncertainty

6 “the model is certain about the data, but we are not certain about the model”

what is the variance here?

How can we have uncertainty-aware models?

Idea 2: estimate mode uncertainty

“the model is certain about the data, but we are not certain about the model”

usually, we estimate

p(St+1[se, ar) arg max log p(6|D) = arg max log p(D|0)

parameters 0

A

can we instead estimate p(6|D)?

T~

the entropy of this tells us
the model uncertainty!

predict according to:

]p(8t+1\8t,at79)P(9’D)d9

Quick overview of Bayesian neural networks

common approximation:

expected weight uncertainty
about the weight

For more, see:
Blundell et al., Weight Uncertainty in Neural Networks
Gal et al., Concrete Dropout

We'll learn more about variational inference later!

Bootstrap ensembles

p(St+1/se, ar) Train multiple models and see if they agree!
formally: p(0|D) ~ ! > 5(6:)
GRA0000 A0H0000 AR0A00¢ ormaty: b SN

1
p(St+1lst, at, 0)p(0|D)df ~ N ZP(St+1|3t, at)

How to train?

Main idea: need to generate “independent”
(st,a) datasets to get “independent” models

0; is trained on D;, sampled with replacement from D

Bootstrap ensembles in deep learning

p(St+1[se, ar) This basically works

/ \ \ Very crude approximation, because the

, H".‘ N L ! /:?|“\ o : L ! /:?I“\ . H".‘ N L ! /:{,-Il,‘ .
i W W 0\ number of models is usually small (< 10
[RTA DAY | LY DAY | LY DAY
[! IS8 1 ! . 1 ! IS8
W N\ v \
1 i \ W /1 i /1 i \ |

o o Resampling with replacement is usually
,. | ' unnecessary, because SGD and random
i) Lggeny,) Ui) initialization usually makes the models

N TS sufficiently independent

How to plan with uncertainty

H
Before: J(ai,...,ag) =) ,_,7(st,at), where s;1 = f(s¢, a)
: _ 1 N H h _
Now: J(ai,...,ag) = w2 ;-1 2 t—1 "(St,5,at), where ;11 ; = fi(St4,a¢)
. _ distribution over
In general, for candidate action sequence ai,...,ag: deterministic models

Step 1: sample 6 ~ p(6|D)
Step 2: at each time step ¢, sample s;11 ~ po(Sir1|Se, as)
Step 3: calculate R =), r(s¢, a)

Step 4: repeat steps 1 to 3 and accumulate the average reward

Slightly more complex option: moment matching

Given p(s;), use p(s’[s,a) to estimate p(s;y1)
We can get p(s;11), potentially represented with samples

Project non-Gaussian p(s;y1) to Gaussian p(s;11) using moment matching

Write) , Esp(s,)|7(S¢)] and differentiate

Cumulative Reward

Example: model-based RL with ensembles

6000

5000

4000

3000

2000

1000

0

1000

10°

Deep Reinforcement Learning in a Handful of Trials
using Probabilistic Dynamics Models

Cheetah

— Mb
s | MIE
—— Mb-Mf (ours)

104 10° 106 107 108 10¢
Steps

before

Our Method [WNagahbandi ct al. 2007]

exceeds performance of model-free after 40k steps
(about 10 minutes of real time)

; [Kamthe ct al. 2017]
GPbs (GP-MM)

ard

Rew

- &alf—chwtah

0) SO0 1000
MNumber of Timesteps

=

PO SAC SAC(DDPG DIDPG

al CONVCTECnCe

&L COnYCTgence al convergence

after

Further readings

* Deisenroth et al. PILCO: A Model-Based and Data-Efficient Approach to
Policy Search.

Recent papers:

* Chua et al. Deep Reinforcement Learning in a Handful of Trials using
Probabilistic Dynamics Models.

* Feinberg et al. Model-Based Value Expansion for Efficient Model-Free
Reinforcement Learning.

* Buckman et al. Sample-Efficient Reinforcement Learning with Stochastic
Ensemble Value Expansion.

Break

Previously: model-free RL with images

This lecture: Can we use model-based methods with
Images?

slides from C. Finn

Recap: Model-based RL

model-based reinforcement learning version 1.0:

1. run base policy mg(as|s;) (e.g., random policy) to collect D = {(s,a,s’);}
— 2. learn dynamics model f(s,a) to minimize >, || f(s;, a;) — s}||?

3. plan through f(s,a) to choose actions

— 4. execute those actions and add the resulting data {(s,a,s’);} to D

What about POMDPs?

Markov property
independent of x;_1

slides from C. Finn p(xt"'l |Xt’ 11,5) p(xt-l-l |Xtv ut)

Learning In Latent Space

Key idea: learn embedding g(0;), then learn in latent space

(model-based or model-free)

@Markov property

independent of x;_1

What do we want g to be?

It depends on the method — we'll see.

slides from C. Finn

Learning In Latent Space

Key idea: learn embedding g(0:) = X¢, then learn in latent space
(model-based or model-free)

Autonomous reinforcement learning on raw visual
input data in a real world application

Sascha Lange, Martin Riedmiller Arne Voigtldnder
Department of Computer Science Shoogee GmbH & Co. KG
Albert-Ludwigs-Universitit Freiburg Krogerweg 16a

controlling a slot-car

slides from C. Finn

1. collect data with exploratory policy
2. learn low-dimensional embedding of image (how?)

3. run g-learning with function approximation with
embedding

target: reconstruction Deep Autoencoder

/‘\1’/‘\\»\\\ feature space
- .‘.‘.}. improved by
o ;
Reinforcement
§ e p"g Learning
S|E S bottle , |
© € - ‘ e B
-.OC-; 8 X %) R neck © N,
551 I LA
o
o t i policy
high-dimensional SR low-dimensional

maps feature
vectors to
actions

3 e 5 i i"' . ‘ g |
™

input: vector of pixel values

action a

system

embedding is low-dimensional and summarizes the image

slides from C. Finn

1. collect data with exploratory policy
2. learn low-dimensional embedding of image (how?)

3. run g-learning with function approximation with
embedding

Pros:
+ Learn visual skill very efficiently
Cons:

- Autoencoder might not recover the right
representation

- Not necessarily suitable for model-based methods

slides from C. Finn

Learning In Latent Space

Key idea: learn embedding g(0:) = X¢, then learn in latent space
(model-based or model-free)

Deep Spatial Autoencoders for Visuomotor Learning

Chelsea Finn, Xin Yu Tan, Yan Duan, Trevor Darrell, Sergey Levine, Pieter Abbeel

e om0

. .
M - L BN

t =13 (0.655)

t = 60 (3.00s) t =100 (5.00s)

Fig. 1: PR2 learning to scoop a bag of rice into a bowl with a

) . spatula (left) using a learned visual state representation (right).
slides from C. Finn

collect data with exploratory policy

learn smooth, structured embedding of image

learn local-linear model with embedding

4. run iLQG with local models to learn to reach goal image

W=

RGB image conv1 spatial softmax feature
points

reconstruction

il 7x7 conv '\6‘4ﬁlters

stride 2
RelLU

—

fully
connected
linear

g 5x5 conv
RelLU

expected
2D position

240

117

embedding is smooth and structured

slides from C. Finn

collect data with exploratory policy

learn smooth, structured embedding of image

learn local-linear model with embedding

run iILQG with local models to learn to reach goal image

> w =

Because we aren’t using states, we need a reward.

slides from C. Finn

autonomous execution 6x real-time

slides from C. Finn

Learning In Latent Space

Key idea: learn embedding g(0;) = X¢, then learn in latent space

(model-based or model-free)

Embed to Control: A Locally Linear Latent
Dynamics Model for Control from Raw Images

Manuel Watter™ Jost Tobias Springenberg* Martin Riedmiller
Joschka Boedecker Google DeepMind
University of Freiburg, Germany London, UK
{watterm, springj, jboedeck}@cs.uni-freiburg.de riedmiller@google.com

VAE VA

-
e

slides from C. Finn

1. collect data
2. learn embedding of image & dynamics model (jointly)
3. run iLQG to learn to reach image of goal

@Markov property

independent of x;_1q

embedding that can be modeled

slides from C. Finn

Swing-up with the E2C algorithm

slides from C. Finn

L ocal models with images

SOLAR: Deep Structured Latent Representations

for Model-Based Reinforcement Learning

|

next

1ter

ation]

4

2

4)
run p(u|x;)
on robot

collect D = {r;
g)

J

e

P(Xt+1|Xt,11t) }@

N

\.

N
fit dynamics

J

U

e

\.

improve - ;gﬁ%

Learn directly in observation space
_Key'idea_b&pn'embeéd*ﬁgﬁﬁr directly learn p(o¢+1|o¢, a)

t—1 |
64x64x3 I
1] | | Deconv 2 | Deconv 2 1 l 1
AR :Du 5x5 @u 5%5 ’i?t 5X5 ’:D 5x5 S:d:jj 5x5 5x5 %DJ 5x5 ’D:Di 5x5 o
yl rnde tride: econv . - - -
. B T Finn, L. Deep Visual Foresight for Planning Robot

Motion. ICRA 2017.

e
32x32x32 32x32x32 32x32x32 16x16x64 16x16x64 8x8x128 16x16x64 32x32x32 64x64x11
[|
:
A]
actions
5x5 Transf |
states 8x8 CDNA T : Images

64x64x10 64x64x3

":* ";. "'} ":* @y "')

Ebert, Finn, Lee, L. Self-Supervised Visual Planning
with Temporal Skip Connections. CoRL 2017.

: L - 5 _‘:__ , _ : o - 7 '.‘-. . o ‘.‘ = 7 f-. _ . f- 7 d -‘~_5

Use predictions to complete tasks

ask execution

Predict alternative quantities

If | take a set of actions:

' Pinto et al. '16 Will | collide? Dosovitskiy & Koltun ‘17
,» | h | Kahnetal 17 e

"4 >

il LR Lmi—— Is "'," 31 & || ____LJM | o::j 58“
Will | successfully grasp? What will health/damage/etc. be?

Pros:
+ Only predict task-relevant quantities!

Cons:
- Need to manually pick quantities, must be able to directly observe them

