
Model-Based Reinforcement 
Learning

CS 294-112: Deep Reinforcement Learning

Sergey Levine



Class Notes

1. Project proposal due today!

2. Remember to start early on Homework 3!



1. Last lecture: choose good actions autonomously by backpropagating 
(or planning) through known system dynamics (e.g. known physics)

2. Today: what do we do if the dynamics are unknown?
a. Fitting global dynamics models (“model-based RL”)

b. Fitting local dynamics models

3. Friday: learning dynamics for high-dimensional observations, such as 
images

4. Following Wednesday: combining optimal control and policy search to 
train neural network policies with the aid of optimal control

Overview



1. Overview of model-based RL
• Learn only the model

• Learn model & policy

2. What kind of models can we use?

3. Global models and local models

4. Learning with local models and trust regions

• Goals:
• Understand the terminology and formalism of model-based RL

• Understand the options for models we can use in model-based RL

• Understand practical considerations of model learning

• Not much deep RL today, we’ll see more advanced model-based RL later!

Today’s Lecture



Why learn the model?



Why learn the model?



Why learn the model?



Does it work? Yes!

• Essentially how system identification works in classical robotics

• Some care should be taken to design a good base policy

• Particularly effective if we can hand-engineer a dynamics representation 
using our knowledge of physics, and fit just a few parameters



Does it work? No!

• Distribution mismatch problem becomes exacerbated as we use more 
expressive model classes

go right to get higher!



Can we do better?



What if we make a mistake?



Can we do better?
ev

er
y 

N
 s

te
p

s

This will be on HW4!



How to replan?
ev

er
y 

N
 s

te
p

s

• The more you replan, the less perfect 
each individual plan needs to be

• Can use shorter horizons

• Even random sampling can often work 
well here!



That seems like a lot of work…
ev

er
y 

N
 s

te
p

s



Backpropagate directly into the policy?

backprop backprop
backprop

easy for deterministic policies, but also possible for stochastic policy (more on this later)



Summary

• Version 0.5: collect random samples, train dynamics, plan
• Pro: simple, no iterative procedure
• Con: distribution mismatch problem

• Version 1.0: iteratively collect data, replan, collect data
• Pro: simple, solves distribution mismatch
• Con: open loop plan might perform poorly, esp. in stochastic domains

• Version 1.5: iteratively collect data using MPC (replan at each step)
• Pro: robust to small model errors
• Con: computationally expensive, but have a planning algorithm available

• Version 2.0: backpropagate directly into policy
• Pro: computationally cheap at runtime
• Con: can be numerically unstable, especially in stochastic domains (more on this later)



Case study: model-based policy search with GPs



Case study: model-based policy search with GPs



Case study: model-based policy search with GPs





What kind of models can we use?

Gaussian process neural network

image: Punjani & Abbeel ‘14

other

video prediction?
more on this later 
in the course



ev
er

y 
N

 s
te

p
s





Break



The trouble with global models

• Planner will seek out regions where the model is erroneously optimistic

• Need to find a very good model in most of the state space to converge 
on a good solution



The trouble with global models

• Planner will seek out regions where the model is erroneously optimistic

• Need to find a very good model in most of the state space to converge 
on a good solution

• In some tasks, the model is much more complex than the policy



Local models



Local models



Local models



What controller to execute?



What controller to execute?



What controller to execute?



Local models



How to fit the dynamics?

Can we do better?



What if we go too far?



How to stay close to old controller?



KL-divergences between trajectories

• Turns out to work very similarly to trust region for PG

dynamics & initial state are the same!



KL-divergences between trajectories



KL-divergences between trajectories

negative entropy



KL-divergences between trajectories



Digression: dual gradient descent

how to maximize? Compute the gradient!



Digression: dual gradient descent



Digression: dual gradient descent



DGD with iterative LQR



DGD with iterative LQR

this is the hard part, 
everything else is easy!



DGD with iterative LQR



DGD with iterative LQR



Trust regions & trajectory distributions

•Bounding KL-divergences between two policies or 
controllers, whether linear-Gaussian or more complex 
(e.g. neural networks) is really useful

•Bounding KL-divergence between policies is equivalent 
to bounding KL-divergences between trajectory 
distributions



Example: local models & iterative LQR







Example: local models with images




