Model-Based Reinforcement
Learning

CS 294-112: Deep Reinforcement Learning

Sergey Levine



Class Notes

1. Project proposal due today!
2. Remember to start early on Homework 3!



Overview

1. Last lecture: choose good actions autonomously by backpropagating
(or planning) through known system dynamics (e.g. known physics)

2. Today: what do we do if the dynamics are unknown?
a. Fitting global dynamics models (“model-based RL”)
b. Fitting local dynamics models

3. Friday: learning dynamics for high-dimensional observations, such as
Images

4. Following Wednesday: combining optimal control and policy search to
train neural network policies with the aid of optimal control



Today’s Lecture

1. Overview of model-based RL
* Learn only the model
* Learn model & policy

2. What kind of models can we use?
3. Global models and local models
4. Learning with local models and trust regions

* Goals:
* Understand the terminology and formalism of model-based RL
* Understand the options for models we can use in model-based RL
* Understand practical considerations of model learning

* Not much deep RL today, we’ll see more advanced model-based RL later!



Why learn the model?

T
min Zc(xt,ut) s.t. x¢ = f(X¢—1, 1)

ui,...,ur
t=1

min c(x1,u1) +c(f(x1,u1),u2) + - +c(f(f(...)...),up)

ui,..., U

usual story: differentiate via backpropagation and optimize!

if df \dc dc
ClXt, dllt

need




Why learn the model?
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Why learn the model?

If we knew f(s¢, a;) = si11, we could use the tools from last week.
(or p(s¢t1lst, as) in the stochastic case)

So let’s learn f(s;, a;) from data, and then plan through it!

model-based reinforcement learning version 0.5:
1. run base policy m(a;|s;) (e.g., random policy) to collect D = {(s,a,s’);}
2. learn dynamics model f(s,a) to minimize Y. || f(s;,a;) — s

3. plan through f(s,a) to choose actions



Does it work? Yes|

* Essentially how system identification works in classical robotics
* Some care should be taken to design a good base policy

* Particularly effective if we can hand-engineer a dynamics representation
using our knowledge of physics, and fit just a few parameters



Does it work? No!

1. run base policy my(as|s;) (e.g., random policy) to collect D = {(s,a,s’);}
2. learn dynamics model f(s,a) to minimize Y, || f(s;, a;) — s}||?

3. plan through f(s,a) to choose actions

Pr(St) # Py (St)

 Distribution mismatch problem becomes exacerbated as we use more
expressive model classes



Can we do better?

can we make pr,(S¢) = pr;(S¢)?

where have we seen that before? need to collect data from p; ,(s¢)

model-based reinforcement learning version 1.0:
1. run base policy m(a¢|s¢) (e.g., random policy) to collect D = {(s,a,s’);}
2. learn dynamics model f(s,a) to minimize Y || f(s;,a;) — s||*
3. plan through f(s,a) to choose actions

4. execute those actions and add the resulting data {(s,a,s’);} to D



What if we make a mistake?




every N steps

Can we do better?

model-based reinforcement learning version 1.5:

1. run base policy m(a;|s;) (e.g., random policy) to collect D = {(s,a,s’);}

2.

A

learn dynamics model f(s,a) to minimize Y. || f(s;, a;) — s
plan through f(s,a) to choose actions

execute the first planned action, observe resulting state s’ (MPC)

append (s, a,s’) to dataset D
This will be on HW4!



How to replan?

model-based reinforcement learning version 1.5:
1. run base policy mo(a¢|st) (e.g., random policy) to collect D = {(s,a,s’);}
to minimize Y, || f(si, a;) — st||?

2. learn dynamics model f(s,a)

3. plan through f(s,a) to choose actions

action, observe resulting state s’ (MPC)

4. execute the first planned

every N steps

5. append (s, a,s’) to dataset D

* The more you replan, the less perfect
each individual plan needs to be

e Can use shorter horizons

* Even random sampling can often work
well here!




That seems like a lot of work...

every N steps

model-based reinforcement learning version 1.5:

1. run base policy mg(as|s;) (e.g., random policy) to collect D = {(s,a,s’);}

2.
3.
4.
D.

learn dynamics model f(s,a) to minimize >_. || f(s;,a;) — s||?

backpropagate through f(s,a) to choose actions (e.g. using iLQR)

execute the first planned action, observe resulting state s’ (MPC)

append (s,a,s’) to dataset D
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Deep Learning for Real-Time Atari Game Play
Using Offline Monte-Carlo Tree Search Planning

Xiaoxiao Guo Satinder Singh
Computer Science and Eng. Computer Science and Eng.
University of Michigan University of Michigan
guoxiao@umich.edu baveja@umich.edu
Honglak Lee Richard Lewis Xiaoshi Wang
Computer Science and Eng. Department of Psychology Computer Science and Eng.

University of Michigan University of Michigan University of Michigan
honglak@umich.edu rickl@umich.edu xiaoshiw@umich.edu



Backpropagate directly into the policy?

backprop

backprop

n
>

easy for deterministic policies, but also possible for stochastic policy (more on this later)

model-based reinforcement learning version 2.0:
1. run base policy m(a¢|s;) (e.g., random policy) to collect D = {(s, a,s’);}
2. learn dynamics model f(s,a) to minimize >, || f(s;, a;) — s}||?
3. backpropagate through f(s,a) into the policy to optimize mg(as|s;)

4. run 7o (as|s;), appending the visited tuples (s,a,s’) to D



Ssummary

e Version 0.5: collect random samples, train dynamics, plan
* Pro: simple, no iterative procedure
e Con: distribution mismatch problem

e Version 1.0: iteratively collect data, replan, collect data
* Pro: simple, solves distribution mismatch
* Con: open loop plan might perform poorly, esp. in stochastic domains

e Version 1.5: iteratively collect data using MPC (replan at each step)

* Pro: robust to small model errors
* Con: computationally expensive, but have a planning algorithm available

* Version 2.0: backpropagate directly into policy
* Pro: computationally cheap at runtime
e Con: can be numerically unstable, especially in stochastic domains (more on this later)



Case study: model-based policy search with GPs

Learning to Control a Low-Cost Manipulator using
Data-Efficient Reinforcement Learning

Marc Peter Deisenroth Carl Edward Rasmussen Dieter Fox
Dept. of Computer Science & Engineering Dept. of Engineering Dept. of Computer Science & Engineering
University of Washington University of Cambridge University of Washington

Seattle, WA, USA Cambridge, UK Seattle, WA, USA




Case study: model-based policy search with GPs

Learning to Control a Low-Cost Manipulator using
Data-Efficient Reinforcement Learning

Marc Peter Deisenroth Carl Edward Rasmussen Dieter Fox
Dept. of Computer Science & Engineering Dept. of Engineering Dept. of Computer Science & Engineering
University of Washington University of Cambridge University of Washington
Seattle, WA, USA Cambridge, UK Seattle, WA, USA

1. run base policy mg(as|s;) (e.g., random policy) to collect D = {(s,a,s’);}
2. learn GP dynamics model p(s’|s,a) to maximize ) . log p(s;|s;, a;)
3. backpropagate through p(s’|s,a) into the policy to optimize my(as|s;)

4. run 7o (as|s;), appending the visited tuples (s,a,s’) to D



Case study: model-based policy search with GPs

3. backpropagate through p(s’|s,a) into the policy to optimize mg(a;|s;)

Given p(s;), use p(s’[s,a) to compute p(s;11)
If p(s;) is Gaussian, we can get a (non-Gaussian) p(s;11) in closed form

Project non-Gaussian p(s;y1) to Gaussian p(s;11) using moment matching

Fs p(s)lc(s)] easy if ¢ is nice and p(s) Gaussian

Write ), Esp(s,)7(s¢)] and differentiate




Marc Peter Deisenroth, Carl Edward Rasmussen, Dieter Fox

Learning to Control a Low-Cost Manipulator
using Data-efficient Reinforcement Learning




What kind of models can we use?

Gaussian process

GP with input (s,a) and output s’
Pro: very data-efficient
Con: not great with non-smooth dynamics

Con: very slow when dataset is big

neural network

.ﬂ
/4

image: Punjani & Abbeel ‘14
Input is (s, a), output is s’

Fuclidean training loss corresponds
to Gaussian p(s'|s, a)

More complex losses, e.g. output
parameters of Gaussian mixture

Pro: very expressive, can use
lots of data

Con: not so great in low data
regimes
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GMM over (s, a,s’) tuples
Train on (s,a,s’), condition to get p(s’[s,a)

For i*" mixture element, p;(s,a) gives region
where the mode p;(s’|s,a) holds

other classes: domain-specific models
(e.g. physics parameters)

video prediction?
more on this later
in the course



every N steps

Neural Network Dynamics
for Model-Based Deep Reinforcement Learning
with Model-Free Fine-Tuning

model-based reinforcement learning version 1.5:
1. run base policy m(az|s;) (e.g., random policy) to collect D = {(s,a,s’);}
2. learn dynamics model f(s,a) to minimize Y || f(s;,a;) — s||*

plan through f(s,a) to choose actions (random sampling)

execute the first planned action, observe resulting state s’ (MPC)

A

append (s, a,s’) to dataset D



THESE DYNAMICS MODELS ARE
TRAINED USING TRAJECTORIES THAT
CONSIST ONLY OF RANDOM STEPS.

AT TEST TIME, WE SHOW THAT THE
MODELS CAN BE USED TO FOLLOW
VARIOUS DESIRED TRAJECTORIES.



Break



The trouble with global models

Global model: f(s;,a;) represented by a big neural network

1. run base policy m(a;|s;) (e.g., random policy) to collect D = {(s,a,s’);}
2. learn dynamics model f(s,a) to minimize Y. || f(s;,a;) — s
3. plan through f(s,a) to choose actions

4. execute those actions and add the resulting data {(s,a,s’);} to D

* Planner will seek out regions where the model is erroneously optimistic

* Need to find a very good model in most of the state space to converge
on a good solution



The trouble with global models

* Planner will seek out regions where the model is erroneously optimistic

* Need to find a very good model in most of the state space to converge
on a good solution

* In some tasks, the model is much more complex than the policy



Local models

T
min Zc(xt,ut) s.t. x¢ = f(X¢—1, 1)

ui,...,ur
t=1

min c(x1,u1) +c(f(x1,u1),u2) + - +c(f(f(...)...),up)

ui,..., U

usual story: differentiate via backpropagation and optimize!

if df \dc dc
ClXt, dllt

need




Local models

df df \dc dc
dXt ’ dllt ’ ClXt ’ dllt

need

af  df

idea: just fit : around current trajectory or policy!

dXt dut

LQR gives us a linear feedback controller

can execute in the real world!

100 '




Local models

P(Xt+1|Xt; ut) = N(f(xt, ut)v E)
f(xe,ue) = Ayxy + Bouy

df df
A, =2 B,=-2L
t dxi ! duy

4 A

run p(ut \Xt)
on robot

collect D = {7;}

[

\ J
4 ™
 hext fit dynamics
1teration
P(Xet1[xe, 1) = =

\ Y,

-

—

improve ‘!ﬁ"
controller f;}

-




What controller to execute?

=

controller

{improve 7 } 1ILQR produces: x¢, uy, Ky, ky

U — Kt(Xt — )A(t) -+ kt -+ lAlt
Version 0.5: p(u¢|x:) = d(uy = 04)
Doesn’t correct deviations or drift

Version 1.0: p(us|x;) = d(up = Ke(x: — X¢) + ke + 04)
Better, but maybe a little too good?

Version 2.0: p(ut\xt) — N(Kt(Xt — }A(t) -+ kt -+ ﬁt, Zt)

Add noise so that all samples don’t look the same!



What controller to execute?

Version 2.0: p(ut\xt) — N(Kt(Xt — }A(t) —+ kt —+ ﬁt, Zt)

Set Et = —1

U ,Uyg

Q(x¢,uy) is the cost to go: total cost we get after taking an action

1| x g X X g
Q(xt,ut):const+§[ t] Qt[ t]Jr[ t] q:

Qu, u, is big if changing u; changes the Q-value a lot!
If u; changes Q-value a lot, don’t vary u; so much

Only act randomly when it minimally affects the cost to go



What controller to execute?

Version 2.0: p(ut\xt) — N(Kt(Xt — }A(t) —+ kt —+ ﬁt, Zt)

Set Et = —1

Standard LQR solves min Zle c(xy, uy)

Linear-Gaussian solution solves min Z;rzl Eix, uy)~p(x:,uy) le(x¢, ug) —H(p(ug|xy))]

This is the maxrimum entropy solution: act as randomly as possible while mini-
mizing cost



Local models

P(Xt+1|Xt; ut) = N(f(xt, ut)v E)
f(xe,ue) = Ayxy + Bouy

df df
A, =2 B,=_-L
T ax, T du,

-

[

next
iteration

/\

4 N

run p(ug|x;)
on robot

collect D = {7;
NG (i) J

- D
fit dynamics

p(xpa1|Xe, uy) = ==

\- J

{

N

improve - ﬁ"
’P(ut|Xt) Jﬂ}

-




How to fit the dynamics?

fit dynamics :
p(Xipa|xe,0) =

{(Xt, Uy, Xt—{—l)z'}

Version 1.0: fit p(x;11|x¢, uz) at each time step using linear regression

d d
P(Xep1]xe, up) = N(Aexy + Brue + ¢, Ny) A~Y g

~ dXt dllt

Can we do better?

Version 2.0: fit p(x;11|X¢, uz) using Bayesian linear regression

Use your favorite global model as prior (GP, deep net, GMM)



What if we go too far?




How to stay close to old controller?

IMPIOVE ;éiﬁ
pluglxy)  ~

p(ug|xe) = M(Kp(xy — %¢) + ke + 04, 24)

Ut|Xt Xt—}—l’Xtv Ut)

IISH

What if the new p(7) is “close” to the old one p(7)?
If trajectory distribution is close, then dynamics will be close too!

What does “close” mean? Dgry,(p(7)||p(T)) <€



KL-divergences between trajectories

* Turns out to work very similarly to trust region for PG

Dy (p(7)||p(7)) = Ep(r)llog p(7) — log p(7)]

T T
H llt|Xt Xt+1|Xta ut) 15(7) — p(Xl) Hﬁ(utfxt)p(XtH!Xt, ut)
t=1 t=1

dynamics & initial state are the same!

T
log p(7) — log p(r) =logpixy) + Y log p(ug|xt) + log plXerrixe. uy)

t=1

— log + > —log p(usfx;) — log p(Xeyriee, uy)
t=1



KL-divergences between trajectories

Dy, (p(7)]|p(7)) = Epr)llog p(1) — log p(7)]

T
log p(7) — log p(r) =logpixy) + Y log p(ug|xt) + log plXerrixe. uy)

t=1

D1 (p(7)[|p(7)) = Epr) Zlogp(ut\xt) — log p(uy|x¢)

Dy (p(7)|[p(T Z p(xe,uy) [l0g P(ue|xt) — log p(ut|xy)]



KL-divergences between trajectories
Dxuw(p(7)|Ip(7) Z p(xeue) 10g p(Ue|x¢) — log p(ue|xy)]

Dy (p(7)|1p(7) Z p(xeuy) [~ 108 D(We[Xe)] 4+ Epse,) [Ep(u,x,) [l0g p(ue[x¢) ]

negative entropy

Dkw(p(7)|p(T Z p(xe,u) (108 D(ue[xe) — H(p(ue|xy))]



KL-divergences between trajectories

Dk (p(7)|p(T) Z p(xeuy) ( log P(ue|xe ) )= H(p(ue|xe))]

Reminder: Linear-Gaussian solves min Zle Ep(xt,ut) H(p(ug|xy))]

p(ug]xs) = N (Kp(x — X¢) + kg + 0y, 34)
If we can get Dykr, into the cost, we can just use iLQR!

But how?

We want a constraint: Dkr,(p(7)||p(7)) < €



Digression: dual gradient descent

min f(x) s.t. C'(x) =0

X

L(x,\) = f(x)+ A (x)

g(A) = igf[ﬂ(x, M)

A arg max g(A)

how to maximize? Compute the gradient!



Digression: dual gradient descent

m}in f(x) s.t. C(x)=0 L(x,\) = f(x)+ AC(x)
g(A) = igfﬁ(x, A)
g(A) = Lx(A), M)

dg L dx* | dL
d\  dx>d)\ = d)

if x* = argminy £(x, \), then % = 0!



Digression: dual gradient descent

min f(x) s.t. C'(x) =0 L(x,\) = f(x)+ A (x)

X

g(A) = L(x"(A), M)
1. Find x* + arg miny, £(x, \)

— 1 E j A —— _
X a,l“g min (X ) :3 Comp]]te 9 — [)\ (X A)
d d 3 5

d\  d\



DGD with iterative LQR

This is the constrained problem we want to solve:

mmZE (xeup) [C(Xts ut)] 8.t Dri(p(7)||p(7)) < €

DKL ”p Z p(x¢, ut) logﬁ(utlxt) T H(p(utlxt))]

Z e 1€k, 1) — Alog p(ug|xs) — NH(p(uy]xs))] — Ae



DGD with iterative LQR

Il’llIlZ p(xt, ut) Xtaut)] s.t. DKL(p(T)Hﬁ(T)) S €

Z o) [0 1) — Alog pug[x,) — NH(p(ug]x,))] — Ae

S G : this is the hard part,
1. Find p™ <« al'g N1y, ﬁ(p’ A) everything else is easy!

2. Compute 7 @ = & (p*, \)

3. A A\ ozd)\




DGD with iterative LQR
1. Find p* < argmin, L(p, \)
mmz p(xe u) [C(Xt, ur) — Alog p(ug[x:) — AH(p(ue|xt))] — Ae

Reminder: Linear-Gaussian solves min Z;r:l By, up) [€(X¢,0¢) — H(p(ug]x¢))]

p(ue]xs) = N(Ke(xe — %X¢) + ke + 0, 2¢)

mlnz p(xe,us) [ c(x¢,us) — log p(ug|x¢) — H(p(ug|x¢))

Just use LQR with cost é(xs, uy) = +¢(x¢, uy) — log p(ug|xy)



DGD with iterative LQR
mlnz p(xy, ut)[c Xtaut)] s.t. DKL(p(T)Hﬁ(T)) S €
1. Set ¢(x¢,uy) = ye(xe, ug) — log plug|xy)

2. Use LQR to find p*(u¢|x¢) using ¢
3. A= A+ oDk (p(7)||p(1)) — €)




Trust regions & trajectory distributions

* Bounding KL-divergences between two policies or
controllers, whether linear-Gaussian or more complex
(e.g. neural networks) is really useful

* Bounding KL-divergence between policies is equivalent
to bounding KL-divergences between trajectory
distributions



Example: local models & iterative LQR

Learning Contact-Rich Manipulation Skills with Guided Policy Search

Sergey Levine, Nolan Wagener, Pieter Abbeel

4 )

run p(ug|x;) @& /
on robot ’

[

next
1teration

/\

N

collect D =1T;
g iy J

fit dynamics

P(Xt+1 |Xi;7 ut) e N

{

p(ug|x)

p
improve % }

.
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autonomous execution




x real time




SOLAR: Deep Structured Latent Representations
for Model-Based Reinforcement Learning

Example: local models with images

a e e @ e

Co

Cr—1

4 )

run p(u|x;)
on robot

collect D = {7;}

[

next
1teration

/\

- J

fit dynamics

p(X¢y1]xe, uy) = e

{

-

N

improve -@f@ -
plufx) {?ﬁ}

-







