
CS294-112 Deep Reinforcement Learning HW5:

Meta-Reinforcement Learning

Due November 14th, 11:59 pm

1 Introduction

Deep reinforcement learning algorithms usually require a large number of trials.
So far with the tools we have learned in this course, learning a new task entails
re-collecting this large dataset and training from scratch. Intuitively, knowledge
gained in learning one task should help to learn new, related tasks more quickly.
Humans and animals are able to learn new tasks in just a few trials. In this
assignment, we design a reinforcement learning algorithm that leverages prior
experience to figure out how to solve new tasks quickly. In recent literature,
such methods are referred to as meta-reinforcement learning Mishra et al. [2018],
Finn et al. [2017], Wang et al. [2016], Duan et al. [2016].

2 Background

2.1 Notation

Formally, we will define a task as a finite-horizon discounted Markov Decision
Process (MDP) M1, drawn from a distribution pM : M → R+. Each MDP
M is defined as M = (S,A, P, r, ρ0, γ, T ) in which S is the set of states, A
the set of actions, P : S × A → R+ the dynamics distribution, r : S × A →
[−Rmax, Rmax] a bounded reward function, ρ0 the initial state distribution,
γ ∈ [0, 1] the discount factor, and T the horizon. Given a state s, the agent
takes action a, receives reward r and a boolean indicating if the episode has
ended d. While these ideas can be applied to value-based methods as well, we
will focus on policy gradient approaches, in which we optimize a stochastic policy
πθ, parameterized by θ. The objective is to maximize its expected discounted
return, J(πθ) = E[

∑t
t=0 γ

tr(st, at)].

1Infinite-horizon, undiscounted, and first-exit formulations are also possible, and are
straightforward generalizations of this definition.
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2.2 Contextual Policies

We define a trial to be a set of episodes collected from a single task. This is
analogous to a batch of trajectories that might be used to update the policy
in a policy gradient method. Our goal is to learn a policy that solves new
tasks drawn from pM within a few trials. To do this, the policy must leverage
knowledge from previously learned tasks. A simple solution is to fine-tune a pre-
trained policy on the collected trajectories. This approach is not very robust
and often fails in practice without additional technical improvements, because
it may be hard to jump out of the optimum that the policy converged to from
the training tasks.

Instead, we condition a single policy on a context, which encodes the task. This
context is a function of the agent’s prior experience. Given M ∼ pM , the policy
initially acts conditioned on an empty context. As experience is accumulated,
the policy is able to infer information about the task. To enable this behavior,
the policy is optimized end-to-end to solve M given the context.

2.3 Recurrent policy

One way to incorporate context is by concatenating (s, a, r, d) tuples across
time and feeding them as input into the policy (rather than having the input
only be the state s). The action taken, the reward received, and whether the
episode ended provide important context for the agent to infer what task it is
solving. If we were to implement this with a fully connected policy architecture,
the number of policy parameters grows linearly with the length of the history,
quickly becoming intractable. Instead, we can model the policy as a recurrent
network. We’ll take a short detour into how recurrent networks work. This
detour is meant to aid in understanding the basics of recurrent networks, and
is not implementation instructions.

2.3.1 Recurrent Neural Networks

Ah, recurrent neural networks (RNN), the deepest networks of all2. Unlike a
memoryless feedforward policy that takes in a state st and outputs at as

at = π(st),

2https://www.youtube.com/watch?v=0YLppTV hLY
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an RNN based policy also contains a hidden state h that is carried through
time:

a0, h1 = π(s0, h0)

a1, h2 = π(s1, h1)

a2, h3 = π(s2, h2)

a3, h4 = π(s3, h3)

...

The next hidden state ht+1 is a function of both the current state st and the
current hidden state ht. Therefore, at a high level, an RNN policy may be
implemented like so:

ht+1 = f(st, ht)

at = g(st, ht+1)

such that

at, ht+1 = π(st, ht).

Unlike a feedfoward network, the hidden state allows the RNN to remember
information that has happened many timesteps in the past. In particular, given
a task drawn from pM , if the observations contain information about the reward
structure of the environment, then the RNN policy may be able to infer the task
by aggregating reward information over multiple timesteps in the hidden state,
such that it can quickly learn to solve that task. At each timestep the policy
receives (s, a, r, d) as input, which is used to update the hidden state. The next
action is a function of this hidden state, and is thus a function of the policy’s
experience up to that timestep. The same hidden state is updated throughout
the trial. During training, we sample M ∼ pM , and roll out the policy to
collect data for the update. The policy is optimized to maximize the total
discounted reward accumulated across the whole trial (not a single episode).
We optimize the usual policy gradient objective, using backpropagation through
time (BPTT) [Werbos, 1990] to compute gradients dependent on the agent’s
prior experience. This approach is based on the recent papers [Duan et al.,
2016, Wang et al., 2016]. By training on a distribution of tasks (rather than
a single task as earlier in this course), the policy’s hidden state can learn to
encode a representation of the task, which the policy can then leverage to solve
it.

2.4 Learning to Learn

So far we have viewed the recurrent policy as a simple modeling choice to allow
the agent to condition actions on a history of trajectories. However, we can
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also view this approach as learning to learn. In this view, the recurrent policy
is itself a learning algorithm, which learns over time as it accumulates more
history. The “learning” that the policy performs for a new task simply consists
of ingesting the context and outputting the action. The “learned” learning
algorithm is therefore implemented in the weights of the network. Thus we can
think of this formulation as consisting of an inner and outer loop. In the inner
loop, the agent learns to complete a single task (via updating the hidden state as
more history is accumulated). In the outer loop, the agent is optimized to learn
the task faster (via policy gradient optimization). While perhaps somewhat
contrived in the context of solely this model, this viewpoint is powerful as a way
to look at the problem of transfer learning. We can consider different kinds of
inner loop learners, and as long as the learning process is differentiable, it can
be optimized by the outer loop. For example, instead of a hidden state update,
the inner learner could be gradient descent on model parameters [Finn et al.,
2017].

3 Installation

Obtain the starter code from https://github.com/berkeleydeeprlcourse/

homework/tree/master/hw5/multi. It is similar to the code you used for HW2,
and requires the same dependencies. For this assignment, you will be working
with a simple 2-D point mass navigation environment. To train the policy, the
basic command with all defaults is

python train_policy.py --env_name <environment_name> --exp_name

<experiment_name>↪→

4 Implementation

While the code is based on the HW2 code, for better performance the vanilla
policy gradient has been replaced with an off-policy actor-critic algorithm prox-
imal policy optimization (PPO) [Schulman et al., 2017]. Take a look at these
modifications if you like, but you won’t have to know anything about PPO to
complete this assignment.

4.1 Problem 1: Context as Task ID

We’ll start off by giving the policy a task identifier rather than learning it from
experience, in effect telling the policy which task it should perform, rather than
asking it to figure it out from reward signals. Note that we won’t be able
to generalize to new tasks not seen during training, but this experiment will
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validate that we can learn a contextual policy. For this we’ll use a simple 2-D
point mass environment with four goal locations. At each time step, the agent
receives a penalty equal to the negative Euclidean distance from the goal. Fill in
the parts of the code labeled “Problem 1” in point_mass_observed.py.

Note: Due to a bit of lack of foresight, Problem 1 will not run until you have
implemented the trajectory sampling from Problem 2. It has been relabeled
Problem 1 in the code.

4.2 Problem 2: Meta-Learned Context

Now we will learn to infer the task from prior experience and rewards. We
will continue to use the point mass environment for this part, but goals will be
sampled randomly from a square. You will implement the data collection, which
requires you to construct “meta-states” of concatenated (s, a, r, d) tuples, as well
as the recurrent “meta-learner.” You can use the TensorFlow implementation
of a GRU cell for this part. Fill in the parts of the code labeled “Problem 2” in
train_policy.py.

4.3 Problem 3: Generalization

In the previous problem, testing goals could be arbitrarily close to training
goals. Here we evaluate generalization to tasks strictly outside of the training
set. Divide the state space into checkerboard pattern, where the alternating
colors correspond to alternating train/test goals. Fill in the parts of the code
labeled “Problem 3” in point_mass.py.

5 Deliverables

Use plot.py to plot learning curves. The hyper-parameter defaults should work,
but they may not be the best - feel free to modify them.

5.1 Problem 1

Run the command

python train_policy.py 'pm-obs' --exp_name <experiment_name>

--history 1 -lr 5e-5 -n 200 --num_tasks 4↪→

You should get an average return of around -50. Include a plot of the average
return in your report.

5



5.2 Problem 2

Compare the performance of the feed-forward and recurrent architectures for
different lengths of history. (For a history length of 60, the recurrent network
should achieve an average return of about -100.) You can modify the history
length with the option --history and you can switch architectures with the
--recurrent flag. Be sure to roughly control for the number of model param-
eters when comparing the two architectures. Include a plot of average return
for both architectures for at least three different history lengths. Discuss your
results. What minimum history length is needed? Which architecture works
better? If you change any hyper-parameters, discuss the result. Run the follow-
ing command, with and without the recurrent flag.

python train_policy.py 'pm' --exp_name <experiment_name>

--history <history> --discount 0.90 -lr 5e-4 -n 60↪→

5.3 Problem 3

Compare the performance of the policy on training goals and testing goals.
Vary the granularity of the checkerboard and comment on the generalization
performance as the training and testing distributions become more different.
Include plots comparing training and testing average returns for at least two
different settings. Run the following command. You may want to add a flag to
control the train/test distribution shift.

python train_policy.py 'pm' --exp_name <experiment_name>

--history <history> --discount 0.90 -lr 5e-4 -n 60↪→

5.4 Submission

Turn in both parts of the assignment on Gradescope as one submission. Upload
the zip file with your code to HW5 Code Meta, and upload the PDF of your
report to HW5 Meta.
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