Supervised Learning of
Behaviors

CS 294-112: Deep Reinforcement Learning

Sergey Levine



Class Notes

1. Make sure you sign up for Piazza!

2. Homework 1 is now out
* Milestone due soon — good way to check your TensorFlow knowledge

3. Remember to start forming final project groups
4. Waitlist



Today’s Lecture

1. Definition of sequential decision problems

2. Imitation learning: supervised learning for decision making
a. Does direct imitation work?
b. How can we make it work more often?

3. Case studies of recent work in (deep) imitation learning
4. What is missing from imitation learning?

* Goals:
* Understand definitions & notation
* Understand basic imitation learning algorithms
* Understand their strengths & weaknesses



Terminology & notation

s; — state
o; — observation mo(a;|o;) — policy
a; — action mo(a¢|sy) — policy (fully observed)

0; — ob&ex vation



Terminology & notation

s; — state
o; — observation mo(a;|o;) — policy
a; — action mo(a¢|sy) — policy (fully observed)

Markov property
independent of s;_;




Aside: notation

s; — state
a; — action

Richard Bellman

X — state
u; — action  ynpasneHue

Lev Pontryagin



Imitation Learning

mo(az|oy)
training superv.ised To (Ht|0t)
data learning

Images: Bojarski et al. ‘16, NVIDIA



Does it work? No!

-~ - fralning trajectory
o =— Ty expected trajectory







Why did that work?

Bojarski et al. ‘16, NVIDIA
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Can we make it work more often?

©r = training trajectory
— mp expected trajectory

stability



Learning from a stabilizing controller
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Can we make it work more often?

- = training trajectory
- . — Ty expected trajectory

’J’Te(at|0t)
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can we make Pdata(0t) = pr,(04)7



Can we make it work more often?

can we make pgata(0t) = pr,(04)7

idea: instead of being clever about pr,(0¢), be clever about pgata(04)!

DAgger: Dataset Aggregation

goal: collect training data from p,,(0;) instead of pgata(0¢)
how? just run mg(a;|o;)

but need labels a;!

1. train mp(a¢|o¢) from human data D = {o1,a;,...,0n,an}
2. run mp(a;|oy) to get dataset D, = {01,...,0u}

3. Ask human to label D, with actions a;

4. Aggregate: D + DU D,

Ross et al. ‘11



DAgger Example

T

Ross et al. ‘11



What’s the problem?

1. train mp(a¢|os) from human data D = {01, ay,
2. run mp(a;|oy) to get dataset D, = {01,...,0u}
[3. Ask human to label D, with actions a; ]

4. Aggregate: D + DU D,

Ross et al. ‘11

...,DN,HN}



Can we make it work without more data?

* DAgger addresses the problem of  — tvuning trajctory
. . . . T e g expected trajectory
distributional “drift” e

 What if our model is so good that it
doesn’t drift?

* Need to mimic expert behavior very
accurately

e But don’t overfit!



Why might we fail to fit the expert?

1. Non-Markovian behavior
2. Multimodal behavior

To(as|0¢) mo(as|o0q, ..., 0)
behavior depends only behavior depends on
on current observation all past observations

If we see the same thing
twice, we do the same thing  Often very unnatural for

twice, regardless of what human demonstrators
happened before



How can we use the whole history?

variable number of frames,
too many weights



How can we use the whole history?

“# 17— RNN state

A 4

“7 17— RNN state

v
RNN state

Typically, LSTM cells work better here



Why might we fail to fit the expert?

1. Non-Markovian behavior

. i f
2. Multimodal behavior l 1. Output mixture o
H

Gaussians

Implicit density model

Autoregressive
discretization




Why might we fail to fit the expert?

1. Output mixture of m(alo) = Z“J’W(#n&)

Gaussians
Implicit density model

Autoregressive
discretization
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Why might we fail to fit the expert?

1. Output mixture of
Gaussians

Implicit density model

Autoregressive
discretization




Why might we fail to fit the expert

1.

Output mixture of
Gaussians

ImpI|C|t density mode| (discretized) distribution  —7—7—

Autoregressive
discretization

over dimension 1 only
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Imitation learning: recap

training supervised

| . ?TH(H£|D¢)
. earning

e Often (but not always) insufficient by itself
* Distribution mismatch problem

JAN
* Sometimes works well ) -
* Hacks (e.g. left/right images) V.
* Samples from a stable trajectory distribution
* Add more on-policy data, e.g. using Dagger
* Better models that fit more accurately




Case study 1: trail following as classification

A Machine Learning Approach to Visual Perception
of Forest Trails for Mobile Robots

Alessandro Giustil, Jérome Guzzil, Dan C. Cireganl, Fang-Lin Hel, Juan P. R()drl’guez1
Flavio Fontana?, Matthias Faessler?, Christian Forster?
Jiirgen Schmidhuber!, Gianni Di Caro!, Davide Scaramuzza?, Luca M. Gambardella'
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Case study 2: DAgger & domain adaptation

Learning Transferable Policies for Monocular
Reactive M AV Control

Shreyansh Daftry, J. Andrew Bagnell, and Martial Hebert

Robotics Institute, Carnegie Mellon University, Pittsburgh, USA
{daftry,dbagnell,hebert}@ri.cmu.edu
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1. train mp(as|o;) from human data D = {o1,ay,...,0n,ax}
2. run mp(a;|oy) to get dataset D, = {01,...,07}

3. Ask human to label D, with actions a;

4. Aggregate: D < DUD,
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Average Distance Travelled (m)

& Source ® Target w/o Domain Adaptation Target with Domain Adaptation ¢ Lower Bound *® Upper Bound

Fig. 2. Experiments and Results for (Row-1) Transfer across physical systems from
ARDrone to ArduCopter, (Row-2) Transfer across weather conditions from summer to
winter and (Row-3) Transfer across environments from Univ. of Zurich to CMU.
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Case study 3: Imitation with LSTMs

Learning real manipulation tasks from virtual demonstrations using LSTM

Rouhollah Rahmatizadeh®, Pooya Abolghasemi', Aman Behal® and Ladislau B6loni®

Gripper state Gripper state
L~ atnext atnext __—
time-step time-step
r Multilayer
LSTM NN
Current state of
the environment Current state of
and gripper the environment
and gripper Robot performs the task in
Demonstration of the task  Training an LSTM network real-world based on the trajectory
by user in the simulation on demonstrations generated by the network
Virtual world: training the network Physical world: inference from the network




Learning Manipulation Trajectories
Using Recurrent Neural Networks
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Follow-up: adding vision

Vision-Based Multi-Task Manipulation for
Inexpensive Robots Using End-To-End Learning from

Controlling
robot arm

by PS Move |:J|>

Demonstrating multiple tasks while recording:
1) Sequence of images, 2) Robot joint commands

Demonstration
(;urrent Environment
image change

—)

Training
neural
network

Joint
Task command
selector to robot

Robot autonomously performs the selected task by
continuously receiving images of the environment




ISt we demoenstraterdiiierent taskSHeNIENenoL:
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Other topics in imitation learning

 Structured prediction

x: where are you “where” “are”  “you”

y: I’'m at work > < g

'm i w
= See Mohammad Norouzi’s lecture in November!

* Interaction & active learning

* Inverse reinforcement learning
" Instead of copying the demonstration, figure out the goal
= Will be covered later in this course



Imitation learning: what’s the problem?

* Humans need to provide data, which is typically finite
* Deep learning works best when data is plentiful

* Humans are not good at providing some kinds of actions

* Humans can learn autonomously; can our machines do the same?
* Unlimited data from own experience
e Continuous self-improvement



Next time: learning without humans




Terminology & notation

s; — state
0; — observation c(s¢, a;) — cost function
a; — action r(s¢, a¢) — reward function

Al 4. AT

T
min g p(saten) byt tigerfas(sq_aa)_1)
t=1



Aside: notation

s; — state
a; — action
r(s,a) — reward function

Richard Bellman

r(s,a) = —c(x,u)

X — state
u; — action  ynpasneHue
c(x,u) — cost function

Lev Pontryagin



Cost/reward functions in theory and practice

0 otherwise

r(s,a) = { 1 if object at target

r(s,a) = — ws
—_— "w?

— Wy

pgripper(s) - pobjcct(s)||2+

puljjcct(s) - ptargct(s)||2+
2

al|

(s, a) 1 if walker is running
0 otherwise

r(s,a) =wiv(s)+
w20 (|Otorso(8)| < €)+
112*3(5(.'11-1;[_,1-50(5) > h,)



A cost function for imitation?

training superv.ised To (ﬂt ‘Dc,)
Tefts learning
r(s,a) = logp(a = 7*(s)|s)
. train mg(a;|o;) from human data D = {01,a1,...,0x,an}

1
2. run mp(a;|oy) to get dataset D, = {01,...,0u}
3. Ask human to label D, with actions a;

4. Aggregate: D + DU D,

Ross et al. ‘11



The trouble with cost & reward functions

reward

Sim-to-Real Robo@l;g from P@with

Progressive Nets

Andrei A. Rusu, Matej Vecerik, Thomas Rothorl, Nicolas Heess,
Razvan Pascanu, Raia Hadsell

Google DeepMind
London, UK

{andreirusu, matejvecerik, tcr, heess, razp, raia}@google.com

Mnih et al."15
reinforcement learning agent what is the reward?

L

M O re O n t h | S I a te r cee Rewards are given automatically by(tracking the colored targe




A note about terminology...

the “R” word

a bit of history...

T
reinforcement learning max E E[?"(St,at)] St+1 ~ P(Str1]se, ar)
(the problem statement) t=1

reinforcement learning

without using the model St41 ~ PSta-1Se, A
(the method) +1~ P(Ser1se, ay)

Lev Pontryagin Richard Bellman Andrew Barto Richard Sutton



