Meta-Learning

CS 294-112: Deep Reinforcement Learning

Sergey Levine

Class Notes

Two weeks until the project milestone!
Guest lectures start next week, be sure to attend!
Today: part 1: meta-learning

B w e

Today: part 2: parallelism

How can we frame transfer learning problems?

No single solution! Survey of various recent research papers

3. Multi-task meta-learning: learn to learn from many tasks
a) RNN-based meta-learning
b) Gradient-based meta-learning

So far...

* Forward transfer: source domain to target domain
 Diversity is good! The more varied the training, the more likely transfer is to
succeed
* Multi-task learning: even more variety
* No longer training on the same kind of task
* But more variety = more likely to succeed at transfer

* How do we represent transfer knowledge?
* Model (as in model-based RL): rules of physics are conserved across tasks
* Policies — requires finetuning, but closer to what we want to accomplish
 What about learning methods?

What is meta-learning?

* If you’ve learned 100 tasks already, can you
figure out how to learn more efficiently?

* Now having multiple tasks is a huge advantage!

i Follow the
- gradient

Descent

Gradient \\\\

* Meta-learning = learning to learn L)
{ 0scCl anng... } " T
I . [whatdoldo? ‘ |
* In practice, very closely related to multi-task Ny

1 earne \
learning omimzer)

* Many formulations
* Learning an optimizer S 4
* Learning an RNN that ingests experience
* Learning a representation

image credit: Ke Li

Why is meta-learning a good idea?

* Deep reinforcement learning, especially model-free, requires a
huge number of samples

 |f we can meta-learn a faster reinforcement learner, we can learn
new tasks efficiently!

 What can a meta-learned learner do differently?
* Explore more intelligently
* Avoid trying actions that are know to be useless
* Acquire the right features more quickly

Meta-learning with supervised learning

training data test set

meta-training

I-
NE

meta-testing

image credit: Ravi & Larochelle ‘17

Meta-learning with supervised learning

training data test set

T el
meta-trainin oY 1 5]
Al < [=="=L']

meta-testing @ %

Yiest —— test label

|
I I I I
(z1,91) (T2,92) (T3,Y3) Trest

‘ . N

test input

(few shot) training set

supervised learning: f(z) — y

[\

input (e.g., image) output (e.g., label)

supervised meta-learning: f(Dirain,) — Y

/

training set

* How to read in training set?
* Many options, RNNs can work
* More on this later

The meta-learning problem in RL

supervised meta-learning: f(Dirain,) — ¥

reinforcement meta-learning (for example...): f(Dipain, S) — a

Fr A\

recent experience state output (e.g., action)

Dtrain — {81,(11,']“1, <o 7(]’NJSN1TN}

4 <«——— Nnew action

‘ ‘ I
T T T T

(s1,a1,71) (s2,a9,19) (s3,0a3,73) S4

' , N

new state

experience

Meta-learning in RL with memory

“water maze” task

second attempt

third attempt

with memory without memory

Heess et al., “Memory-based control with recurrent neural networks.”

Tnal 1 Tral 2

A
\ A
\ A
b
r LY
i ~—
s ———s ! s ——
< e, -— -
1 e et ~ -
' 1 i i
i i
1
t i 4
} i L |
t “
| I) —— S
pe— «uf

I | (a) Good behavior, Ist (b) Good behavior, 2nd (c) Bad behavior, 1st (d) Bad behavior, 2nd
(a) Sample observation (b) Layout of the 5 x 5 maze in (a) (c) Layout of a9 x 9 maze episode episode episode episode

Duan et al., “RL2: Fast Reinforcement Learning via Slow Reinforcement Learning”

Connection to contextual policies

contextual policy: mg(als,w)

a4 -

1
= | > > > — policy
— | | | |
== (s1,01,71) (s2,a2,72) (s3,a3,73) g,

\)
1

context w
w: stack location w: walking direction

just contextual policies, with
experience as context

Back to representations...

B IMAGENET

volution Pooling Outpy
W Connected Connected
I e e e G0g(0.01)
cat (0.04)
= n} bc;:r:?(g‘a:z)
al [y :
(u] o] e i ' o~

is pretraining a type of meta-learning?
better features = faster learning of new task!

Preparing a model for faster learning
%? C};D % :
LS o *

0 0+a) VoRi[0+ aVeR;(0)]

o

Finn et al., “Model-Agnostic Meta-Learning”

()

®

—/

— meta-learning
---- |learning/adaptation

VLs
v *
V»C] ,,,,,, 93

,/
Orv

9/

What did we just do??

supervised learning: f(z) — y
supervised meta-learning: f(Dirain,) — Y

model-agnostic meta-learning: fyamr(Divain, ©) — ¥

fuamL (Dirains) = for (2) Just another computation graph...

Y —b-a S VeLlf(e).y) Can implement with any autodiff
(2.4) EDyean package (e.g., TensorFlow)

But has favorable inductive bias...

Model-agnostic meta-learning: accelerating PG

after 1 gradient step after 1 gradient step

after MAML training (forward reward) (backward reward)

w

— meta-learning — meta-learning — meta-learning

9 ---- |earning/adaptation 0 ---- |earning/adaptation 9 ---- |learning/adaptation
VL;; VL;g V£3
VL, VL, VL,
VE 1 ,/’. H.‘% VE] Lt 93 VL‘,] /,/
07" 03 03 By 03

Model-agnostic meta-learning: accelerating PG

after 1 gradient step after 1 gradient step

after MAML training (hackward reward) (forward reward)

r r

A

\

— meta-learning — meta-learning — meta-learning
---- |learning/adaptation ---- |earning/adaptation 9 ---- |learning/adaptation

VL;g VL;g V»C:i
VEQ % VEZ % V‘CZ
VL, * ,,,,, 03 VL, P VL,

,/ \\\ ,/ \\\
* // \\ ’ \\ ” ’/ \\
07 0} 0} 0} 0

Meta-learning summary & open problems

* Meta-learning = learning to learn

e Supervised meta-learning = supervised learning with datapoints that
are entire datasets

* RL meta-learning with RNN policies
* |ngest past experience with RNN
e Simply run forward pass at test time to “learn”
* Just contextual policies (no actual learning)

* Model-agnostic meta-learning
* Use gradient descent (e.g., policy gradient) learning rule
* Conceptually not that different
* ...but can accelerate standard RL algorithms (e.g., learn in one iteration of PG)

Meta-learning summary & open problems

* The promise of meta-learning: use past experience to simply acquire a
much more efficient deep RL algorithm

* The reality of meta-learning: mostly works well on smaller problems
e ...but getting better all the time

* Main limitations
* RNN policies are extremely hard to train, and likely not scalable
* Model-agnostic meta-learning presents a tough optimization problem
* Designing the right task distribution is hard
* Generally very sensitive to task distribution (meta-overfitting)

Parallelism in RL

Overview

1. We learned about a number of policy search methods
2. These algorithms have all been sequential

3. Is there a natural way to parallelize RL algorithms?
* Experience sampling vs learning
* Multiple learning threads
* Multiple experience collection threads

Today’s Lecture

1. What can we parallelize?
2. Case studies: specific parallel RL methods
3. Tradeoffs & considerations

* Goals
* Understand the high-level anatomy of reinforcement learning algorithms

* Understand standard strategies for parallelization
* Tradeoffs of different parallel methods

High-level RL schematic

estimate p(s’[s,a) (model-based)
fit a model/

2 T ' . .
e compute @ =, v ~try (MC policy gradient)

fit Q4(s,a) (actor-critic, Q-learning)

generate samples

(i.e. run the policy)

optimize my(als) (model-based)
sl g | 0 < 0+ aVyJ(0) (policy gradient)
m(s) = argmax Q4(s,a) (Q-learning)

Which parts are slow?

& T r_
Q= Zt’:t 'Yt bry

trivial, fast
fit a model/

estimate the return fit qu(s, a)

(real robot/car/power\
grid/whatever:
1x real time, until we
\invent time travel D

expensive, but non-
trivial to parallelize

generate samples

(i.e. run the policy)
MuloCo simulator:

up to 10000x real time
7(s) = argmax Q,(s,a)

trivial, nothing to do
improve the policy

optimize my(als) (model-based)

expensive, but non-
trivial to parallelize

Which parts can we parallelize?

fit Qy(s,a)

fit a model/ parallel SGD
estimate the return

generate samples

(i.e. run the policy)

optimize my(als) (model-based)
improve the policy parallel SGD

Helps to group data generation and training
(worker generates data, computes gradients, and gradients are pooled)

High-level decisions

1. Online or batch-mode?

2. Synchronous or asynchronous?

generate one step
generate one step
generate one step

generate samples

generate samples [EZ 2 policy gradient

generate samples fit Q-value

fit Q-value

fit Q-value

Relationship to parallelized SGD

1. Parallelizing model/critic/actor training typically
fit a model/ involves parallelizing SGD

estimate the return _
2. Simple parallel SGD:

1. Each worker has a different slice of data

2. Each worker computes gradients, sums them, sends to
parameter server

3. Parameter server sums gradients from all workers and

improve the policy

@ sends back new parameters

<%:>®% 3. Mathematically equivalent to SGD, but not

@% P asynchronous (communication delays)

<gg®ﬁ 4. Async SGD typically does not achieve perfect

o kardill o parallelism, but lack of locks can make it much faster

e
Partitions Workers States

Dai et al. ‘15 5. Somewhat problem dependent

Simple example: sample parallelism with PG

collect samples 7; = {s},a’,...,s%, a%} by running 7 (as|s;) N times
compute r; = r(7;)

compute V; = (3, Vglogmy(al|si)) (r; — b)

update: 6 <+ 0+ a) .V,

= Lo

(1) (2,3,4)

generate samples

generate samples X 3 policy gradient

generate samples

Simple example: sample parallelism with PG

collect samples 7; = {s},a’,...,s%, a%} by running 7 (as|s;) N times
compute r; = r(7;)

compute V; = (3, Vglogmy(al|si)) (r; — b)

update: 6 <+ 0+ a) .V,

= Lo

(1) (2) (3, 4)

generate samples evaluate reward

generate samples [&3 evaluatereward [EZ EZ policy gradient

generate samples [=2 evaluate reward

Simple example: sample parallelism with PG

(@

1
1. collect samples 7; = {s%,a’,..., s, a%} by running mg(as|s¢) N times <%:>
D,
2. compute r; = r(7;) (%@
3. compute V; = (Zt Vo log 'Tre(aﬂSi)) (’f’z' - b) (%%@&7
4:. update: 9 < 9 + (8 Z’I, V@ g::taitions \?Vitfl;:rasra"el ZAEZ‘E(‘
Dai et al. 15

(2) (3)

generate samples 54 evaluate reward =4 compute gradient

(1)
» evaluate reward =@ compute gradient Ed =% AU T
gradient
B

generate samples 54 evaluate reward =4 compute gradient

What if we add a critic?

1. collect samples 7; = {s%,a},...,s%,a’} by running m(a;|s;) N times

2. compute r; = r(7;)

3. update Ag4(s?,al) with regression to target values - :sre \:/?]2:’:haecgopr,;ii)r:]tsichlz.c;l;r:e
4. compute V,; = (Zt Vg log mg (a§|8§)) flqg(si, ai)

5. update: 0 — 0 +a) .V,

(1, 2) (3) (3)
samples & rewards [critic gradients B i & sy e
= gradient
samples & rewards\, k2 critic gradients L
(4) /) costly synchronization
policy gradients L - sum & apply policy
policy gradients > B

What if we add a critic?

1. collect samples 7; = {s%,a},...,s%,a’} by running m(a;|s;) N times

2. compute r; = r(7;)

3. update Ag4(s?,al) with regression to target values - :sre \:/?]2:’:haecgopr,;ii)r:]tsichf:;l;rrz
4. compute V,; = (Zt Vg log mg (a§|8§)) flqg(si, ai)

5. update: 0 — 0 +a) .V,

(1, 2)

samples & rewards [critic gradients ﬁ

sum & apply critic
samples & rewards\ [E3 critic gradients gradient

(4) / (5)
policy gradients) i @ arselhy (o

policy gradients == gradient

What if we run online?

collect sample (s;,a;,s;) by running my(als) for 1 step

compute r; = r(s;, a;)

update Ag(s?,al) with regression to target values

compute V; = Vg log mp(a’|s’) A, (s?, a’)

update: 6 < 0+ Zz v,) only the parameter update

requires synchronization (actor + critic params)
samples & rewards [critic gradients ﬁ

sum & apply critic
samples & rewards\ [E3 critic gradients gradient

(4) / (5)
policy gradients) i @ arselhy (o

policy gradients == gradient

A S

(1, 2)

Actor-critic algorithm: A3C

collect sample (s;, a;,s;) by running mg(als) for 1 step

compute r; = r(s;, a;)

I

v
I

. update Ay (s?,al) with regression to target values 9

I

. compute V; = Vylog Wa(ai|Si)A¢(Sia ai)

CUops W

update: 6 < 0 4+«) .V, (only do this every n steps)

 Some differences vs DQN, DDPG, etc:

* No replay buffer, instead rely on diversity of samples from
different workers to decorrelate

* Some variability in exploration between workers
* Pro: generally much faster in terms of wall clock

* Con: generally must slower in terms of # of samples (more

on this later...)
Mnih et al. ‘16

Actor-critic algorithm: A3C

16000 . Beamrider 600 . Breakout 30. Pong 12000
— DQN — DQN
. :1I_Step SARSA 300 s ihsiep (S)ARSA 207 OHOO
12000 SmESS R e
—— n-step Q —— n-step Q
_— 400 A3C 10 18000 -
v o g
S 8000 0 -6000 -
(V] (7]
8000 -10. = ‘1305‘ 5 14000 -
_ — 1-step
4000 - / — LstepSARSA
2000 - — n-step Q | |
A3C
0 0 - =30 : 0
0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14

Training time (hours) Training time (hours) Training time (hours)

Humanoid (27-DoF/21-dim. Actions) Reacher3 (3-DoF /3-dim. Actions) Cheetah (9-DoF /6-dim. Actions)

El

TrusT-TIS
TrusT-A3C
- TIS

ACER

---- A3C

M - - m
Million Steps Million Steps

- - =
Million Steps

20,000,000 steps

Q*bert 1600 Space Invaders

DQN — DQN
1-step Q 1400 — 1-step Q
1-step SARSA 1200. 1-step SARSA
n-step Q —— n-step Q
A3C 1000 A3C

&

§ 800 -

600 -

400/

(VI
8 10 12 14 0 2 4 6 8 10 12 14
Training time (hours)

200

4 6
Training time (hours)

DDPG:

Fixed Reacher

| more on this later...
0

1 Checgal 1,000,000 steps

0

Model-based algorithms: parallel GPS

fit local models for each initial state

a w o

. update policy my(a;|s:) by imitating all p;(as|s;)

(1)

Rollout execution —

y

Local policy optimization

\ 4

Global policy optimization

(2, 3) (4)

Yahya, Li, Kalakrishnan, Chebotar, L., ‘16

get IV samples 7; by running my(as|s;) N times for each initial state sg

use LQR to get updated local policies p;(as|s;) for each initial state S‘g)

// Rollout execution \

Local policy optimization -

Replay memory

Local worker

Global worker

A,
Global policy optimization
A

Parameter server }

[parallelize sampling]

[parallelize dynamics]
[parallelize LQR]
[parallelize SGD]

(1)
(2, 3)

(4)

Model-based algorithms: parallel GPS

Real-world model-free deep RL: parallel NAF

ALy

Robot 1

NAF Architectur

Updated Q

Robot 2

Training
Thread

1 Minibatehes

Samples

Gu*, Holly*, Lillicrap, L., ‘16

(s,a,rs’,t)

Replay Buffer

O(x,u|09) = A(x,u|6*) +V(x|6")

Al u|0) = — (u— p(x]0"))" P(x|6”) (u— 1 (x]0"))

Simplest example: sample parallelism with
off-policy algorithms

grasp success
predictor training

