
Meta-Learning

CS 294-112: Deep Reinforcement Learning

Sergey Levine



Class Notes

1. Two weeks until the project milestone!

2. Guest lectures start next week, be sure to attend!

3. Today: part 1: meta-learning

4. Today: part 2: parallelism



How can we frame transfer learning problems?

1. “Forward” transfer: train on one task, transfer to a new task
a) Just try it and hope for the best
b) Finetune on the new task
c) Architectures for transfer: progressive networks
d) Randomize source task domain

2. Multi-task transfer: train on many tasks, transfer to a new task
a) Model-based reinforcement learning
b) Model distillation
c) Contextual policies
d) Modular policy networks

3. Multi-task meta-learning: learn to learn from many tasks
a) RNN-based meta-learning
b) Gradient-based meta-learning

No single solution! Survey of various recent research papers



So far…

• Forward transfer: source domain to target domain
• Diversity is good! The more varied the training, the more likely transfer is to 

succeed

• Multi-task learning: even more variety
• No longer training on the same kind of task

• But more variety = more likely to succeed at transfer

• How do we represent transfer knowledge?
• Model (as in model-based RL): rules of physics are conserved across tasks

• Policies – requires finetuning, but closer to what we want to accomplish

• What about learning methods?



What is meta-learning?

• If you’ve learned 100 tasks already, can you 
figure out how to learn more efficiently?
• Now having multiple tasks is a huge advantage!

• Meta-learning = learning to learn

• In practice, very closely related to multi-task 
learning

• Many formulations
• Learning an optimizer

• Learning an RNN that ingests experience

• Learning a representation

image credit: Ke Li 



Why is meta-learning a good idea?

• Deep reinforcement learning, especially model-free, requires a 
huge number of samples

• If we can meta-learn a faster reinforcement learner, we can learn 
new tasks efficiently!

• What can a meta-learned learner do differently?
• Explore more intelligently

• Avoid trying actions that are know to be useless

• Acquire the right features more quickly



Meta-learning with supervised learning

image credit: Ravi & Larochelle ‘17



Meta-learning with supervised learning

(few shot) training set

input (e.g., image) output (e.g., label)

training set

• How to read in training set?
• Many options, RNNs can work

• More on this later 
test input

test label



The meta-learning problem in RL

output (e.g., action)staterecent experience

experience
new state

new action



Meta-learning in RL with memory

Heess et al., “Memory-based control with recurrent neural networks.”

with memory without memory

first attempt

second attempt

third attempt

“water maze” task



RL2

Duan et al., “RL2: Fast Reinforcement Learning via Slow Reinforcement Learning”



Connection to contextual policies

just contextual policies, with 
experience as context



Back to representations…

is pretraining a type of meta-learning?

better features = faster learning of new task!



Preparing a model for faster learning

Finn et al., “Model-Agnostic Meta-Learning”



What did we just do??

Just another computation graph…

Can implement with any autodiff
package (e.g., TensorFlow)

But has favorable inductive bias…



Model-agnostic meta-learning: accelerating PG

after MAML training
after 1 gradient step

(forward reward)

after 1 gradient step

(backward reward)



Model-agnostic meta-learning: accelerating PG

after MAML training
after 1 gradient step

(backward reward)

after 1 gradient step

(forward reward)



Meta-learning summary & open problems

• Meta-learning = learning to learn

• Supervised meta-learning = supervised learning with datapoints that 
are entire datasets

• RL meta-learning with RNN policies
• Ingest past experience with RNN

• Simply run forward pass at test time to “learn”

• Just contextual policies (no actual learning)

• Model-agnostic meta-learning
• Use gradient descent (e.g., policy gradient) learning rule

• Conceptually not that different

• …but can accelerate standard RL algorithms (e.g., learn in one iteration of PG)



Meta-learning summary & open problems

• The promise of meta-learning: use past experience to simply acquire a 
much more efficient deep RL algorithm

• The reality of meta-learning: mostly works well on smaller problems

• …but getting better all the time

• Main limitations
• RNN policies are extremely hard to train, and likely not scalable

• Model-agnostic meta-learning presents a tough optimization problem

• Designing the right task distribution is hard

• Generally very sensitive to task distribution (meta-overfitting)



Parallelism in RL



1. We learned about a number of policy search methods

2. These algorithms have all been sequential

3. Is there a natural way to parallelize RL algorithms?
• Experience sampling vs learning

• Multiple learning threads

• Multiple experience collection threads

Overview



1. What can we parallelize?

2. Case studies: specific parallel RL methods

3. Tradeoffs & considerations

• Goals
• Understand the high-level anatomy of reinforcement learning algorithms

• Understand standard strategies for parallelization

• Tradeoffs of different parallel methods

Today’s Lecture



High-level RL schematic

generate samples 
(i.e. run the policy)

fit a model/ 
estimate the return

improve the policy



Which parts are slow?

generate samples 
(i.e. run the policy)

fit a model/ 
estimate the return

improve the policy

real robot/car/power 
grid/whatever:
1x real time, until we 
invent time travel

MuJoCo simulator:
up to 10000x real time

trivial, fast

expensive, but non-
trivial to parallelize

trivial, nothing to do

expensive, but non-
trivial to parallelize



Which parts can we parallelize?

generate samples 
(i.e. run the policy)

fit a model/ 
estimate the return

improve the policy

parallel SGD

parallel SGD

Helps to group data generation and training
(worker generates data, computes gradients, and gradients are pooled)



High-level decisions

1. Online or batch-mode?

2. Synchronous or asynchronous?

generate samples

generate samples

generate samples

policy gradient

generate one step

generate one step

generate one step

fit Q-value

fit Q-value

fit Q-value



Relationship to parallelized SGD

fit a model/ 
estimate the return

improve the policy

1. Parallelizing model/critic/actor training typically 
involves parallelizing SGD

2. Simple parallel SGD:
1. Each worker has a different slice of data
2. Each worker computes gradients, sums them, sends to 

parameter server
3. Parameter server sums gradients from all workers and 

sends back new parameters

3. Mathematically equivalent to SGD, but not 
asynchronous (communication delays)

4. Async SGD typically does not achieve perfect 
parallelism, but lack of locks can make it much faster

5. Somewhat problem dependentDai et al. ‘15



Simple example: sample parallelism with PG

generate samples

generate samples

generate samples

policy gradient

(1) (2, 3, 4)



Simple example: sample parallelism with PG

generate samples

generate samples

generate samples

(1)

evaluate reward

evaluate reward

evaluate reward

(2)

policy gradient

(3, 4)



Simple example: sample parallelism with PG

generate samples

generate samples

generate samples

(1)

evaluate reward

evaluate reward

evaluate reward

(2)

compute gradient

compute gradient

compute gradient

sum & apply 
gradient

(4)(3)

Dai et al. ‘15



What if we add a critic?

samples & rewards

samples & rewards

(1, 2)

critic gradients

critic gradients

(3)

sum & apply critic 
gradient

(3)

see John’s actor-critic lecture
for what the options here are

policy gradients

policy gradients

sum & apply policy 
gradient

(4) (5)
costly synchronization



What if we add a critic?

see John’s actor-critic lecture
for what the options here are

samples & rewards

samples & rewards

(1, 2)

critic gradients

critic gradients

(3)

sum & apply critic 
gradient

(3)

policy gradients

policy gradients

sum & apply policy 
gradient

(4) (5)



What if we run online?

samples & rewards

samples & rewards

(1, 2)

critic gradients

critic gradients

(3)

sum & apply critic 
gradient

(3)

policy gradients

policy gradients

sum & apply policy 
gradient

(4) (5)

only the parameter update
requires synchronization (actor + critic params)



Actor-critic algorithm: A3C

• Some differences vs DQN, DDPG, etc:
• No replay buffer, instead rely on diversity of samples from 

different workers to decorrelate
• Some variability in exploration between workers

• Pro: generally much faster in terms of wall clock

• Con: generally must slower in terms of # of samples (more 
on this later…)

Mnih et al. ‘16



Actor-critic algorithm: A3C

20,000,000 steps

DDPG:

1,000,000 steps

more on this later…



Model-based algorithms: parallel GPS

[parallelize sampling]

[parallelize dynamics]

[parallelize LQR]

[parallelize SGD]

Local policy optimization Global policy optimization

Rollout execution

(1)

(2, 3) (4)

(1)

(2, 3)

(4)

Yahya, Li, Kalakrishnan, Chebotar, L., ‘16



Model-based algorithms: parallel GPS



Real-world model-free deep RL: parallel NAF

Gu*, Holly*, Lillicrap, L., ‘16



Simplest example: sample parallelism with 
off-policy algorithms

sample

sample

sample

grasp success 
predictor training


