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Class Notes

1. Two weeks until the project milestone!



How can we frame transfer learning problems?

1. “Forward” transfer: train on one task, transfer to a new task
a) Just try it and hope for the best
b) Architectures for transfer: progressive networks
c) Finetune on the new task
d) Randomize source task domain

2. Multi-task transfer: train on many tasks, transfer to a new task
a) Model-based reinforcement learning
b) Model distillation
c) Contextual policies
d) Modular policy networks

3. Multi-task meta-learning: learn to learn from many tasks
a) RNN-based meta-learning
b) Gradient-based meta-learning

No single solution! Survey of various recent research papers
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Finetuning summary

• Try and hope for the best
• Sometimes there is enough variability during training to generalize

• Finetuning
• A few issues with finetuning in RL

• Maximum entropy training can help

• Architectures for finetuning: progressive networks
• Addresses some overfitting and expressivity problems by construction



What if we can manipulate the source domain?

• So far: source domain (e.g., empty room) and target domain (e.g., 
corridor) are fixed

• What if we can design the source domain, and we have a difficult
target domain?
• Often the case for simulation to real world transfer

• Same idea: the more diversity we see at training time, the better we 
will transfer!



EPOpt: randomizing physical parameters

train test

adapt

training on single torso mass training on model ensemble

unmodeled effectsensemble adaptation

Rajeswaran et al., “EPOpt: Learning robust neural network policies…”



Preparing for the unknown: explicit system ID

Yu et al., “Preparing for the Unknown: Learning a Universal Policy with Online System Identification”

model parameters (e.g., mass)

system identification RNN

policy



(Very) recent work

Xue Bin Peng et al., “Sim-to-Real Transfer of Robotic Control with Dynamics Randomization”



CAD2RL: randomization for real-world control

Sadeghi et al., “CAD2RL: Real Single-Image Flight without a Single Real Image”
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CAD2RL: randomization for real-world control



Sadeghi et al., “CAD2RL: Real Single-Image Flight without a Single Real Image”



Randomization for manipulation

Tobin, Fong, Ray, Schneider, Zaremba, Abbeel

James, Davison, Johns



What if we can peek at the target domain?

• So far: pure 0-shot transfer: learn in source domain so that we can 
succeed in unknown target domain

• Not possible in general: if we know nothing about the target domain, 
the best we can do is be as robust as possible

• What if we saw a few images of the target domain?



Better transfer through domain adaptation

adversarial loss causes
internal CNN features to be

indistinguishable for sim and real

simulated images real images

Tzeng*, Devin*, et al., “Adapting Visuomotor Representations with Weak Pairwise Constraints”



Domain adaptation at the pixel level
can we learn to turn synthetic images into realistic ones?

Bousmalis et al., “Using Simulation and Domain Adaptation to Improve Efficiency of Deep Robotic Grasping”
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Forward transfer summary

• Pretraining and finetuning
• Standard finetuning with RL is hard

• Maximum entropy formulation can help

• How can we modify the source domain for transfer?
• Randomization can help a lot: the more diverse the better!

• How can we use modest amounts of target domain data?
• Domain adaptation: make the network unable to distinguish observations 

from the two domains

• …or modify the source domain observations to look like target domain

• Only provides invariance – assumes all differences are functionally irrelevant; 
this is not always enough!



Forward transfer suggested readings

Haarnoja*, Tang*, Abbeel, Levine. (2017). Reinforcement Learning with Deep Energy-Based 
Policies.

Rusu et al. (2016). Progress Neural Networks.

Rajeswaran, Ghotra, Levine, Ravindran. (2017). EPOpt: Learning Robust Neural Network Policies 
Using Model Ensembles.

Sadeghi, Levine. (2017). CAD2RL: Real Single Image Flight without a Single Real Image.

Tobin, Fong, Ray, Schneider, Zaremba, Abbeel. (2017). Domain Randomization for Transferring 
Deep Neural Networks from Simulation to the Real World.

Tzeng*, Devin*, et al. (2016). Adapting Deep Visuomotor Representations with Weak Pairwise 
Constraints.

Bousmalis et al. (2017). Using Simulation and Domain Adaptation to Improve Efficiency of Deep 
Robotic Grasping.



Break
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Multiple source domains

• So far: more diversity = better transfer

• Need to design this diversity
• E.g., simulation to real world transfer: randomize the simulation

• What if we transfer from multiple different tasks?
• In a sense, closer to what people do: build on a lifetime of experience

• Substantially harder: past tasks don’t directly tell us how to solve the task in 
the target domain!



Model-based reinforcement learning

• If the past tasks are all different, what do they have in common?

• Idea 1: the laws of physics
• Same robot doing different chores

• Same car driving to different destinations

• Trying to accomplish different things in the same open-ended video game

• Simple version: train model on past tasks, and then use it to solve 
new tasks

• More complex version: adapt or finetune the model to new task
• Easier than finetuning the policy is task is very different but physics are mostly 

the same



Model-based reinforcement learning

Example: 1-shot learning with model priors

Fu et al., “One-Shot Learning of Manipulation Skills with Online Dynamics Adaptation…”
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Can we solve multiple tasks at once?

• Sometimes learning a model is very hard

• Can we learn a multi-task policy that can simultaneously perform 
many tasks?

• Should be easier to adapt to new tasks

• Idea 1: construct a joint MDP

• Idea 2: train in each MDP separately, and then combine the policies

etc.
sample

etc.

etc.

MDP 0

MDP 1

MDP 2

pick MDP randomly
in first state



Actor-mimic and policy distillation

Slide adapted from C. Finn



Background: Ensembles & Distillation

Slide adapted from G. Hinton, see also Hinton et al. “Distilling the Knowledge in a Neural Network”

Ensemble models: single models are often not the most robust –
instead train many models and average their predictions

this is how most ML competitions (e.g., Kaggle) are won

this is very expensive at test time

Can we make a single model that is as good as an ensemble?

Distillation: train on the ensemble’s predictions as “soft” targets

Intuition: more knowledge in soft targets than hard labels!

logit

temperature



Distillation for Multi-Task Transfer

Parisotto et al. “Actor-Mimic: Deep Multitask and Transfer Reinforcement Learning”

some other details

(e.g., feature regression objective)

– see paper

(just supervised learning/distillation)

analogous to guided policy search, but 
for transfer learning
-> see model-based RL slides



Distillation Transfer Results

Parisotto et al. “Actor-Mimic: Deep Multitask and Transfer Reinforcement Learning”



How does the model know what to do?

• So far: what to do is apparent from the input (e.g., which game is 
being played)

• What if the policy can do multiple things in the same environment?



Contextual policies

e.g., do dishes or laundry

images: Peng, van de Panne, Peters



Contextual policies

e.g., do dishes or laundry

images: Peng, van de Panne, Peters

will discuss more in the context
of meta-learning!



Architectures for multi-task transfer

• So far: single neural network for all tasks (in the end)

• What if tasks have some shared parts and some distinct parts?
• Example: two cars, one with camera and one with LIDAR, driving in two 

different cities

• Example: ten different robots trying to do ten different tasks

• Can we design architectures with reusable components?

Modular Policies



Modular networks
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Devin*, Gupta*, et al. “Learning Modular Neural Network Policies…”



Modular networks



Multi-task learning summary

• More tasks = more diversity = better transfer

• Often easier to obtain multiple different but relevant prior tasks

• Model-based RL: transfer the physics, not the behavior

• Distillation: combine multiple policies into one, for concurrent multi-
task learning (accelerate all tasks through sharing)

• Contextual policies: policies that are told what to do

• Architectures for multi-task learning: modular networks



Suggested readings

Fu, Levine, Abbeel. (2016). One-Shot Learning of Manipulation Skills with Online Dynamics 
Adaptation and Neural Network Priors.

Rusu et al. (2016). Policy Distillation.

Parisotto, Ba, Salakhutdinov. (2016). Actor-Mimic: Deep Multitask and Transfer Reinforcement 
Learning.

Devin*, Gupta*, Darrell, Abbeel, Levine. (2017). Learning Modular Neural Network Policies for 
Multi-Task and Multi-Robot Transfer.
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more on this next time!


