Exploration (Part 2) and
Transfer Learning

CS 294-112: Deep Reinforcement Learning

Sergey Levine

Class Notes

1. Homework 4 due today! Last one!

Recap: classes of exploration methods in deep RL

* Optimistic exploration:
* new state = good state
* requires estimating state visitation frequencies or novelty
e typically realized by means of exploration bonuses
* Thompson sampling style algorithms:
* |earn distribution over Q-functions or policies
* sample and act according to sample
* Information gain style algorithms
* reason about information gain from visiting new states

Recap: exploring with pseudo-counts

¥

fit model py(s) to all states D seen so far
take a step ¢ and observe s;

fit new model py(s) to D U's;

use po(s;) and py (s;) to estimate N (s)
set 7 =r; + B(N(s)) ~— .

pseudo-count”

how to get N(s)? use the equations

N(s;) _ N(si)+1
po(si) = > por(si) = P
two equations and two unknowns!
R . 1 — per(si)
N S;) = n S; n — p@(si)
(81) = Ao &) P (50) — pals:)

I o

Bellemare et a

Unifying Count-Based Exploration...”

Posterior sampling in deep RL

Thompson sampling:

. What do we sample?
917"'79an(917"'79?’£) p
a = arg max Ep [r(a)] How do we represent the distribution?
bandit setting: p(#4,...,0,) is distribution over rewards

MDP analog is the ()-function!

1. sample Q-function @ from p(Q)

2. act according to () for one episode

) since Q-learning is off-policy, we don’t care
3. update p(Q)) which Q-function was used to collect data

how can we represent a distribution over functions?

Osband et al. “Deep Exploration via Bootstrapped DQN”

Bootstrap

given a dataset D, resample with replacement /N times to get Dy,...,Dn
train each model fp, on D;

to sample from p(#), sample ¢ € [1,..., N| and use foy,

(b) Gaussian process posterior (c) Bootstrapped neural nets

training N big neural nets is expensive, can we avoid it?

Shared network

Frame

Osband et al. “Deep Exploration via Bootstrapped DQN”

Why does this work?

Exploring with random actions (e.g., epsilon-greedy): oscillate
back and forth, might not go to a coherent or interesting place

Exploring with random Q-functions: commit to a randomized
but internally consistent strategy for an entire episode

0e+00 le+08 2¢+08 Algorithm
— Bootstrapped DQN

- very good bonuses often do better

Average score per episode

0e+00 le+08 2e+08 0e+00 le+08 2e+08 0e+00 le+08 2e+08
Total training frames

Osband et al. “Deep Exploration via Bootstrapped DQN”

Reasoning about information gain (approximately)

Info gain: IG(z,y|a)

information gain about what?
information gain about reward r(s,a)? not very useful if reward is sparse

state density p(s)? a bit strange, but actually makes sense!

information gain about dynamics p(s’[s,a)? good proxy for learning the MDP, though still heuristic

Generally intractable to use exactly, regardless of what is being estimated!

Reasoning about information gain (approximately)

Generally intractable to use exactly, regardless of what is being estimated

A few approximations:

prediction gain: log pg:(s) — log pe(s) (Schmidhuber ‘91, Bellemare 16)

intuition: if density changed a lot, the state was novel

variational inference: (Houthooft et al. “VIME”)
IG can be equivalently written as Dkr,(p(0|h, s¢, az, si11)||p(0|h))

/]

history of all prior transitions

model parameters for pg(s¢+1|s¢, at)

newly observed transition

intuition: a transition is more informative if it causes belief over 6 to change
idea: use variational inference to estimate q(0|¢) = p(0|h)

given new transition (s, a,s’), update ¢ to get ¢’

Reasoning about information gain (approximately)

VIME implementation:

IG can be equivalently written as Dkr,(p(0|h, s¢, az, si11)||p(0|h))
e [

history of all prior transitions

model parameters for pg(si+1|se, ar)
newly observed transition

q(0)9) ~ p(0|h) specifically, optimize variational lower bound Dky,(q(0|®)||p(h|0)p(6))

represent q(6|¢) as product of independent Gaussian parameter distributions

with mean ¢ (see Blundell et al. “Weight uncertainty in neural networks”)
given new transition (s, a,s’), update ¢ to get ¢’
this corresponds to updating the network weight means and variances

use Dxkr,(q(0|9")||q(0]|¢)) as approximate bonus
Houthooft et al. “VIME”

Reasoning about information gain (approximately)

VIME implementation:

IG can be equivalently written as Dkr,(p(0|h, s¢, az, si11)||p(0|h))
q(0|¢) =~ p(6|h) specifically, optimize variational lower bound Dkr,(q(0|®)||p(h|0)p(8))

use Dk1,(q(0|¢")||q(0|0)) as approximate bonus

Approximate IG:

- models are more complex, generally
harder to use effectively

(a) CartPole (b) CartPoleSwingup (c) DoublePendulum (d) MountainCar

Houthooft et al. “VIME”

Exploration with model errors

Dx1,(q(0|9")||q(0|¢)) can be seen as change in network (mean) parameters ¢

if we forget about IG, there are many other ways to measure this

Stadie et al. 2015:

* encode image observations using auto-encoder

* build predictive model on auto-encoder latent states
* use model error as exploration bonus

Schmidhuber et al. (see, e.g. “Formal Theory of Creativity, Fun, and Intrinsic Motivation):
» exploration bonus for model error

* exploration bonus for model gradient

* many other variations

Many others!

Suggested readings

Schmidhuber. (1992). A Possibility for Implementing Curiosity and Boredom in Model-Building
Neural Controllers.

Stadie, Levine, Abbeel (2015). Incentivizing Exploration in Reinforcement Learning with Deep
Predictive Models.

Osband, Blundell, Pritzel, Van Roy. (2016). Deep Exploration via Bootstrapped DQN.

Houthooft, Chen, Duan, Schulman, De Turck, Abbeel. (2016). VIME: Variational Information
Maximizing Exploration.

Bellemare, Srinivasan, Ostroviski, Schaul, Saxton, Munos. (2016). Unifying Count-Based
Exploration and Intrinsic Motivation.

Tang, Houthooft, Foote, Stooke, Chen, Duan, Schulman, De Turck, Abbeel. (2016). #Exploration:
A Study of Count-Based Exploration for Deep Reinforcement Learning.

Fu, Co-Reyes, Levine. (2017). EX2: Exploration with Exemplar Models for Deep Reinforcement
Learning.

Next: transfer learning and meta-learning

ne benefits of sharing knowledge across tasks

ne transfer learning problem in RL
3. The meta-learning problem statement, algorithms

e Goals:

* Understand how reinforcement learning algorithms can benefit from
structure learned on prior tasks

* Understand prior work on transfer learning
* Understand meta-learning, how it differs from transfer learning

Back to Montezuma’s Revenge

e We know what to do because we understand what
these sprites mean!

* Key: we know it opens doors!
e Ladders: we know we can climb them!

e Skull: we don’t know what it does, but we know it
can’t be good!

* Prior understanding of problem structure can help
us solve complex tasks quickly!

Can RL use the same prior knowledge as us?

* If we've solved prior tasks, we might acquire useful knowledge for
solving a new task

* How is the knowledge stored?
* Q-function: tells us which actions or states are good

* Policy: tells us which actions are potentially useful
* some actions are never useful!

* Features/hidden states: provide us with a good representation
* Don’t underestimate this!

Aside: the representation

Pong

100}

score %

— original |
. - recovery
| 1 1 1 1

0 1 2 3 4 5 6
steps le7

100

Qbert

bottleneck

100
80

60 |
40|

20

Seaquest

160}
140+
120

100

Spacelnvaders

To decouple reinforcement learning from representation learning, we decapitate an
agent by destroying its policy and value outputs and then re-train end-to-end.

The representation remains and the policy is swiftly recovered. The gap between
Initial optimization and recovery shows a representation learning bottleneck.

slide adapted from E. Schelhamer, “Loss is its own reward”

Transfer learning terminology

transfer learning: using experience from for faster
learning and better performance on a new task

in RL, task = VIDP!

“shot”: number of attempts in the

target domain target domain

0-shot: just run a policy trained in
the source domain

1-shot: try the task once

few shot: try the task a few times

slide adapted from C. Finn

How can we frame transfer learning problems?

1.

No single solution! Survey of various recent research papers

“Forward” transfer: train on one task, transfer to a new task
a) Justtry it and hope for the best

b) Architectures for transfer: progressive networks

c) Finetune on the new task

d) Randomize source task domain

Multi-task transfer: train on many tasks, transfer to a new task
a) Model-based reinforcement learning

b) Model distillation

c) Contextual policies

d) Modular policy networks

Multi-task meta-learning: learn to learn from many tasks
a) RNN-based meta-learning
b) Gradient-based meta-learning

Break

How can we frame transfer learning problems?

1. “Forward” transfer: train on one task, transfer to a new task
a) Justtry it and hope for the best
b) Finetune on the new task
c) Architectures for transfer: progressive networks
d) Randomize source task domain

Try it and hope for the best

Policies trained for one set of circumstances might just work in a new domain, but no promises or guarantees

Learned Visuomotor Policy: Bottle Task

Try it and hope for the best

Policies trained for one set of circumstances might just work in a new domain, but no promises or guarantees

real time autonomous execution

Levine®, Finn*, et al. ‘16 Devin et al. ‘17

Finetuning

The most popular transfer learning method in (supervised) deep learning!

‘i IMAGENET

nnnnnnnnnnnnnn

Where are the “ImageNet” features of RL?

Challenges with finetuning in RL

1. RL tasks are generally much less diverse
* Features are less general
 Policies & value functions become overly specialized

2. Optimal policies in deterministic MDPs are
deterministic
* Loss of exploration at convergence
* Low-entropy policies adapt very slowly to new settings

Finetuning with maximum-entropy policies

How can we increase diversity and entropy?

m(als) = exp(Qg¢(s,a)—V (s)) optimizes), Fr(s, a,)[7(St, ar)|+Ers) [H(m(ar]s))]

policy entropy

Act as randomly as possible while collecting high rewards!

Example: pre-training for robustness

Learning to solve a task in all possible ways provides for more robust
transfer!

Example: pre-training for diversity

Pretraining: reward = speed (any direction)

(one robot per trajectory)

‘ random pretrained with pretrained with
DDPG (policy 1) Soft Q-learning (fixed policy) initialization DDPG soft Q-learning

25 random seeds; noise addded to actions random seeds 0 - 24

Wide hallway 1000 Narrow hallway 2500 U-shaped maze

q 2000
A 1500 F--eommveee oo b DO A
s 1000 [S Rl L LT WA

1 L L 1 1
0 50 100 150 200 0 50 100 150 200 1} 50 100 150 200

—— MaxEnt init random init —— DDPG init

I o
.

Haarnoja*, Tang*, et al. “Reinforcement Learning with Deep Energy-Based Policies”

Architectures for transfer: progressive networks

* An issue with finetuning
* Deep networks work best when they are big

* When we finetune, we typically want to use a little
bit of experience

m(als)

 Can we somehow finetune a small network, but still

finetune only this?

} (comparatively)

small FC layer

* Little bit of experience + big network = overfitting A } big FC layer

pretrain a big network?

* |dea 1: finetune just a few layers
* Limited expressiveness
* Big error gradients can wipe out initialization

big
= convolutional
tower

Architectures for transfer: progressive networks

* An issue with finetuning
* Deep networks work best when they are big

* When we finetune, we typically want to use a little
bit of experience

* Little bit of experience + big network = overfitting

 Can we somehow finetune a small network, but still
pretrain a big network?

* |dea 1: finetune just a few layers
* Limited expressiveness
* Big error gradients can wipe out initialization

* |dea 2: add new layers for the new task
* Freeze the old layers, so no forgetting

Rusu et al. “Progressive Neural Networks”

Architectures for transfer: progressive networks

* An issue with finetuning
* Deep networks work best when they are big

* When we finetune, we typically want to use a little
bit of experience

* Little bit of experience + big network = overfitting

* Can we somehow finetune a small network, but still | /
pretrain a big network?

* |dea 1: finetune just a few layers
* Limited expressiveness
* Big error gradients can wipe out initialization

* |dea 2: add new layers for the new task
* Freeze the old layers, so no forgetting

Rusu et al. “Progressive Neural Networks”

Architectures for transfer: progressive networks

Does it work? sort of...
Pong Soup Atari Labyrinth

Mean (%) Median (%) Mean (%) Median (%) Mean (%) Median (%)
Baseline 1 100 100 100 100 100 100
Baseline 2 35 7 41 21 88 85
Baseline 3 181 160 133 110 235 112
Baseline 4 134 131 96 95 185 108
Progressive 2 col 209 169 132 112 491 115
Progressive 3 col 222 183 140 111 — —
Progressive 4 col — — 141 116 — —

Table 1: Transfer percentages in three domains. Baselines are defined in Fig. 3.

source task

target task

11
11
EER

,]

. random

input it input input input -=-
(1) Baseline 1 (2) Baseline 2 (3) Baseline 3 (4) Baseline 4 (5) Progressive Net (6) Progressive Net fl-r;z;]-;

2 columns 3 columns

Rusu et al. “Progressive Neural Networks”

Architectures for transfer: progressive networks

Does it work? sort of...

+ alleviates some issues T e
with finetuning z

o v "
. z == Wide column (progressive)
- not obvious how — Naron column regressve
w Wide column (finetuned)
= Narrow column (from scratch)

Serious these issues are 5 = =+ Wide column (from scratch)

0 10000 20000 30000 40000 50000 60000
Steps

Rusu et al. “Progressive Neural Networks”

Finetuning summary

* Try and hope for the best
* Sometimes there is enough variability during training to generalize

* Finetuning
* A few issues with finetuning in RL
* Maximum entropy training can help

* Architectures for finetuning: progressive networks
* Addresses some overfitting and expressivity problems by construction

What if we can manipulate the source domain?

* So far: source domain (e.g., empty room) and target domain (e.g.,
corridor) are fixed

* What if we can design the source domain, and we have a difficult
target domain?

e Often the case for simulation to real world transfer

* Same idea: the more diversity we see at training time, the better we
will transfer!

EPOpt:

train

L1

adapt

S

4000

3500-
© 3000
g
€ 2500-
€ 2000+
o
€ 1500
& 1000

500

training on single torso mass

—_—m= —_—m=

| — m=

Friction

4

5

2.4 4
2.2 1
2.0
1.8
1.6
1.4

1.0

2.4
2.2
2.0 1
1.8
1.6
1.4
1.2+

1.0

6 7 8 9 3 4 5 6 7 8 9 3
Torso Mass

Torso Mass

ensemble adaptation

Ilter 0

Ilter 1

4 5 6 7
Torso Mass

X

Ilter 2

(@g

5 10 15 20 0O 5 10

Torso Mass

Rajeswaran et al., “EPOpt: Learning robust neural network policies...”

15 20

8

randomizing physical parameters

training on model ensemble

Ensemble

3 4/5 6 7N\8 9
—/Torso Mass

unmodeled effects

Hopper

mass 6.0 1.5 30 9.0
ground friction 2.0 025 15 25
“joimnt damping 2.5 T 1o 30

W o low high

armature 1.0 025 05 1.5
Half-Cheetah 4 o low high
mass 6.0 1.5 30 9.0
ground friction 0.5 01 03 07
JUlllL Lla.lll[}lllg 1.J U.J U.J pope)
armature 0.125 0.04 0.05 0.2
4000
3500 4
3000 1
& 2500
g
£ 2000 4
(=]
£
g_J 1500
1000
500 —— Ensemble (unmodeled)
= Maximum-Likelihood
0
3 4 5 6 7 8 9

Torso Mass

Preparing for the unknown: explicit system ID

system identification RNN

Xt—1

Us—1 ¢) : (mt—h.:t: ut—h.:t—l) =
-
i i L LR et model parameters (e.g., mass)
7}

Xt—h .
policy 14
Ui —p . (:B,p)l—}u IR e s)

,

il [i u | fu(z,u] 10
0.8

Xt4+1

—— UP-true
—— Regular
—— UP-0SI

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6
COM Offset

Yu et al., “Preparing for the Unknown: Learning a Universal Policy with Online System Identification”

CAD2RL: randomization for real-world control

Sadeghi et al., “CAD2RL: Real Single-Image Flight without a Single Real Image”

CAD2RL: randomization for real-world control

Sadeghi et al., “CAD2RL: Real Single-Image Flight without a Single Real Image”

Sadeghi et al., “CAD2RL: Real Single-Image Flight without a Single Real Image”

Randomization for manipulation

L
N |
! Tobin, Fong, Ray, Schneider, Zaremba, Abbeel

&il%l& James, Davison, Johns

. —. N;w.

What if we can peek at the target domain?

* So far: pure O-shot transfer: learn in source domain so that we can
succeed in unknown target domain

* Not possible in general: if we know nothing about the target domain,
the best we can do is be as robust as possible

* What if we saw a few images of the target domain?

Better transfer through domain adaptation

lllll taSK
loss

real-syn
weak : 5 : pairwise
pairs loss
lllll task
loss
H real-syn 5 5 | t :
real images nomaligned ! confusion
- - N pairs =

e]

pose regression convnet
(shared weights)

__gu'®

adversarial loss causes
internal CNN features to be
indistinguishable for sim and real

Tzeng*, Devin*, et al., “Adapting Visuomotor Representations with Weak Pairwise Constraints”

Domain adaptation at the pixel level

can we learn to turn synthetic images into realistic ones?

~ =

Generator G s|s||e
— skip connection i £l Z2ll>
3 5 S 2 2|2l |2
> Q| = 4 5 (§ ® |2 c| c ~
AEERERE T - E
| — .. [] : — w
2] — b 8 A o - e s> b= |l m m
g v | 8 & il = - - @ Ol N 313 <
c||3 |~ re) » I . A= 2| P &
N~ c | = N Q = 8 c 9 x £
x c = |l =) Z | Z2 -
~ 1 -~ |1 @&
L J 172] & [
[) S| |%
S) G c = ~
_ A=

)

Discriminator D

W,

Patches
70x70x6

{ real/fake]

n64s2::relu
n128s2:IN:relu
n256s2:IN:relu
n256s2:IN:relu
n1s1:sigmoid

xfzﬂ
=
. =) KL J\)L L k) /

Bousmalis et al., “Using Simulation and Domain Adaptation to Improve Efficiency of Deep Robotic Grasping”

Bousmalis et al., “Using Simulation and Domain Adaptation to Improve Efficiency of Deep Robotic Grasping”

Forward transfer summary

* Pretraining and finetuning
 Standard finetuning with RL is hard
* Maximum entropy formulation can help

* How can we modify the source domain for transfer?
* Randomization can help a lot: the more diverse the better!

* How can we use modest amounts of target domain data?

 Domain adaptation: make the network unable to distinguish observations
from the two domains

 ...or modify the source domain observations to look like target domain

* Only provides invariance — assumes all differences are functionally irrelevant;
this is not always enough!

Forward transfer suggested readings

Haarnoja*, Tang®*, Abbeel, Levine. (2017). Reinforcement Learning with Deep Energy-Based
Policies.

Rusu et al. (2016). Progress Neural Networks.

Rajeswaran, Ghotra, Levine, Ravindran. (2017). EPOpt: Learning Robust Neural Network Policies
Using Model Ensembles.

Sadeghi, Levine. (2017). CAD2RL: Real Single Image Flight without a Single Real Image.

Tobin, Fong, Ray, Schneider, Zaremba, Abbeel. (2017). Domain Randomization for Transferring
Deep Neural Networks from Simulation to the Real World.

Tzeng*, Devin*, et al. (2016). Adapting Deep Visuomotor Representations with Weak Pairwise
Constraints.

Bousmalis et al. (2017). Using Simulation and Domain Adaptation to Improve Efficiency of Deep
Robotic Grasping.

How can we frame transfer learning problems?

more on this next time!

2. Multi-task transfer: train on many tasks, transfer to a new task
a) Model-based reinforcement learning
b) Model distillation
c) Contextual policies
d) Modular policy networks

