
Exploration (Part 2) and 
Transfer Learning

CS 294-112: Deep Reinforcement Learning

Sergey Levine



Class Notes

1. Homework 4 due today! Last one!



Recap: classes of exploration methods in deep RL

• Optimistic exploration:
• new state = good state
• requires estimating state visitation frequencies or novelty
• typically realized by means of exploration bonuses

• Thompson sampling style algorithms:
• learn distribution over Q-functions or policies
• sample and act according to sample

• Information gain style algorithms
• reason about information gain from visiting new states



Recap: exploring with pseudo-counts

Bellemare et al. “Unifying Count-Based Exploration…”



Posterior sampling in deep RL

Thompson sampling:

Osband et al. “Deep Exploration via Bootstrapped DQN”

What do we sample?

How do we represent the distribution?

since Q-learning is off-policy, we don’t care 
which Q-function was used to collect data



Bootstrap

Osband et al. “Deep Exploration via Bootstrapped DQN”



Why does this work?

Osband et al. “Deep Exploration via Bootstrapped DQN”

Exploring with random actions (e.g., epsilon-greedy): oscillate 
back and forth, might not go to a coherent or interesting place

Exploring with random Q-functions: commit to a randomized 
but internally consistent strategy for an entire episode

+ no change to original reward function

- very good bonuses often do better



Reasoning about information gain (approximately)

Info gain:

Generally intractable to use exactly, regardless of what is being estimated!



Reasoning about information gain (approximately)
Generally intractable to use exactly, regardless of what is being estimated

A few approximations:

(Schmidhuber ‘91, Bellemare ‘16)

intuition: if density changed a lot, the state was novel

(Houthooft et al. “VIME”)



Reasoning about information gain (approximately)
VIME implementation:

Houthooft et al. “VIME”



Reasoning about information gain (approximately)
VIME implementation:

Houthooft et al. “VIME”

+ appealing mathematical formalism

- models are more complex, generally 
harder to use effectively

Approximate IG:



Exploration with model errors

Stadie et al. 2015:
• encode image observations using auto-encoder
• build predictive model on auto-encoder latent states
• use model error as exploration bonus

Schmidhuber et al. (see, e.g. “Formal Theory of Creativity, Fun, and Intrinsic Motivation):
• exploration bonus for model error
• exploration bonus for model gradient
• many other variations

Many others!



Suggested readings

Schmidhuber. (1992). A Possibility for Implementing Curiosity and Boredom in Model-Building 
Neural Controllers.

Stadie, Levine, Abbeel (2015). Incentivizing Exploration in Reinforcement Learning with Deep 
Predictive Models.

Osband, Blundell, Pritzel, Van Roy. (2016). Deep Exploration via Bootstrapped DQN.

Houthooft, Chen, Duan, Schulman, De Turck, Abbeel. (2016). VIME: Variational Information 
Maximizing Exploration.

Bellemare, Srinivasan, Ostroviski, Schaul, Saxton, Munos. (2016). Unifying Count-Based 
Exploration and Intrinsic Motivation.

Tang, Houthooft, Foote, Stooke, Chen, Duan, Schulman, De Turck, Abbeel. (2016). #Exploration: 
A Study of Count-Based Exploration for Deep Reinforcement Learning.

Fu, Co-Reyes, Levine. (2017). EX2: Exploration with Exemplar Models for Deep Reinforcement 
Learning.



Next: transfer learning and meta-learning

1. The benefits of sharing knowledge across tasks

2. The transfer learning problem in RL

3. The meta-learning problem statement, algorithms

• Goals:
• Understand how reinforcement learning algorithms can benefit from 

structure learned on prior tasks

• Understand prior work on transfer learning

• Understand meta-learning, how it differs from transfer learning



Back to Montezuma’s Revenge

• We know what to do because we understand what 
these sprites mean!

• Key: we know it opens doors!

• Ladders: we know we can climb them!

• Skull: we don’t know what it does, but we know it 
can’t be good!

• Prior understanding of problem structure can help 
us solve complex tasks quickly!



Can RL use the same prior knowledge as us?

• If we’ve solved prior tasks, we might acquire useful knowledge for 
solving a new task

• How is the knowledge stored?
• Q-function: tells us which actions or states are good

• Policy: tells us which actions are potentially useful
• some actions are never useful!

• Features/hidden states: provide us with a good representation
• Don’t underestimate this!



Aside: the representation bottleneck

slide adapted from E. Schelhamer, “Loss is its own reward”



Transfer learning terminology

transfer learning: using experience from one set of tasks for faster 
learning and better performance on a new task

slide adapted from C. Finn

in RL, task = MDP!

source domain target domain
“shot”: number of attempts in the 
target domain

0-shot: just run a policy trained in 
the source domain

1-shot: try the task once

few shot: try the task a few times



How can we frame transfer learning problems?

1. “Forward” transfer: train on one task, transfer to a new task
a) Just try it and hope for the best
b) Architectures for transfer: progressive networks
c) Finetune on the new task
d) Randomize source task domain

2. Multi-task transfer: train on many tasks, transfer to a new task
a) Model-based reinforcement learning
b) Model distillation
c) Contextual policies
d) Modular policy networks

3. Multi-task meta-learning: learn to learn from many tasks
a) RNN-based meta-learning
b) Gradient-based meta-learning

No single solution! Survey of various recent research papers



Break



How can we frame transfer learning problems?

1. “Forward” transfer: train on one task, transfer to a new task
a) Just try it and hope for the best
b) Finetune on the new task
c) Architectures for transfer: progressive networks
d) Randomize source task domain

2. Multi-task transfer: train on many tasks, transfer to a new task
a) Model-based reinforcement learning
b) Model distillation
c) Contextual policies
d) Modular policy networks

3. Multi-task meta-learning: learn to learn from many tasks
a) RNN-based meta-learning
b) Gradient-based meta-learning



Try it and hope for the best

Policies trained for one set of circumstances might just work in a new domain, but no promises or guarantees



Try it and hope for the best

Policies trained for one set of circumstances might just work in a new domain, but no promises or guarantees

Levine*, Finn*, et al. ‘16 Devin et al. ‘17



Finetuning

The most popular transfer learning method in (supervised) deep learning!

Where are the “ImageNet” features of RL?



Challenges with finetuning in RL

1. RL tasks are generally much less diverse
• Features are less general

• Policies & value functions become overly specialized

2. Optimal policies in deterministic MDPs are 
deterministic
• Loss of exploration at convergence

• Low-entropy policies adapt very slowly to new settings



Finetuning with maximum-entropy policies

How can we increase diversity and entropy?

policy entropy

Act as randomly as possible while collecting high rewards!



Example: pre-training for robustness

Learning to solve a task in all possible ways provides for more robust 
transfer!



Example: pre-training for diversity

Haarnoja*, Tang*, et al. “Reinforcement Learning with Deep Energy-Based Policies”



Architectures for transfer: progressive networks

• An issue with finetuning
• Deep networks work best when they are big

• When we finetune, we typically want to use a little 
bit of experience

• Little bit of experience + big network = overfitting

• Can we somehow finetune a small network, but still 
pretrain a big network?

• Idea 1: finetune just a few layers
• Limited expressiveness

• Big error gradients can wipe out initialization

big
convolutional
tower

(comparatively)
small FC layer

big FC layer

finetune only this?



Architectures for transfer: progressive networks

• An issue with finetuning
• Deep networks work best when they are big

• When we finetune, we typically want to use a little 
bit of experience

• Little bit of experience + big network = overfitting

• Can we somehow finetune a small network, but still 
pretrain a big network?

• Idea 1: finetune just a few layers
• Limited expressiveness

• Big error gradients can wipe out initialization

• Idea 2: add new layers for the new task
• Freeze the old layers, so no forgetting

Rusu et al. “Progressive Neural Networks”



Architectures for transfer: progressive networks

• An issue with finetuning
• Deep networks work best when they are big

• When we finetune, we typically want to use a little 
bit of experience

• Little bit of experience + big network = overfitting

• Can we somehow finetune a small network, but still 
pretrain a big network?

• Idea 1: finetune just a few layers
• Limited expressiveness

• Big error gradients can wipe out initialization

• Idea 2: add new layers for the new task
• Freeze the old layers, so no forgetting

Rusu et al. “Progressive Neural Networks”



Architectures for transfer: progressive networks

Rusu et al. “Progressive Neural Networks”

Does it work? sort of…



Architectures for transfer: progressive networks

Rusu et al. “Progressive Neural Networks”

Does it work? sort of…

+ alleviates some issues 
with finetuning

- not obvious how 
serious these issues are



Finetuning summary

• Try and hope for the best
• Sometimes there is enough variability during training to generalize

• Finetuning
• A few issues with finetuning in RL

• Maximum entropy training can help

• Architectures for finetuning: progressive networks
• Addresses some overfitting and expressivity problems by construction



What if we can manipulate the source domain?

• So far: source domain (e.g., empty room) and target domain (e.g., 
corridor) are fixed

• What if we can design the source domain, and we have a difficult
target domain?
• Often the case for simulation to real world transfer

• Same idea: the more diversity we see at training time, the better we 
will transfer!



EPOpt: randomizing physical parameters

train test

adapt

training on single torso mass training on model ensemble

unmodeled effectsensemble adaptation

Rajeswaran et al., “EPOpt: Learning robust neural network policies…”



Preparing for the unknown: explicit system ID

Yu et al., “Preparing for the Unknown: Learning a Universal Policy with Online System Identification”

model parameters (e.g., mass)

system identification RNN

policy



CAD2RL: randomization for real-world control

Sadeghi et al., “CAD2RL: Real Single-Image Flight without a Single Real Image”



Sadeghi et al., “CAD2RL: Real Single-Image Flight without a Single Real Image”

CAD2RL: randomization for real-world control



Sadeghi et al., “CAD2RL: Real Single-Image Flight without a Single Real Image”



Randomization for manipulation

Tobin, Fong, Ray, Schneider, Zaremba, Abbeel

James, Davison, Johns



What if we can peek at the target domain?

• So far: pure 0-shot transfer: learn in source domain so that we can 
succeed in unknown target domain

• Not possible in general: if we know nothing about the target domain, 
the best we can do is be as robust as possible

• What if we saw a few images of the target domain?



Better transfer through domain adaptation

adversarial loss causes
internal CNN features to be

indistinguishable for sim and real

simulated images real images

Tzeng*, Devin*, et al., “Adapting Visuomotor Representations with Weak Pairwise Constraints”



Domain adaptation at the pixel level
can we learn to turn synthetic images into realistic ones?

Bousmalis et al., “Using Simulation and Domain Adaptation to Improve Efficiency of Deep Robotic Grasping”



Bousmalis et al., “Using Simulation and Domain Adaptation to Improve Efficiency of Deep Robotic Grasping”



Forward transfer summary

• Pretraining and finetuning
• Standard finetuning with RL is hard

• Maximum entropy formulation can help

• How can we modify the source domain for transfer?
• Randomization can help a lot: the more diverse the better!

• How can we use modest amounts of target domain data?
• Domain adaptation: make the network unable to distinguish observations 

from the two domains

• …or modify the source domain observations to look like target domain

• Only provides invariance – assumes all differences are functionally irrelevant; 
this is not always enough!



Forward transfer suggested readings

Haarnoja*, Tang*, Abbeel, Levine. (2017). Reinforcement Learning with Deep Energy-Based 
Policies.

Rusu et al. (2016). Progress Neural Networks.

Rajeswaran, Ghotra, Levine, Ravindran. (2017). EPOpt: Learning Robust Neural Network Policies 
Using Model Ensembles.

Sadeghi, Levine. (2017). CAD2RL: Real Single Image Flight without a Single Real Image.

Tobin, Fong, Ray, Schneider, Zaremba, Abbeel. (2017). Domain Randomization for Transferring 
Deep Neural Networks from Simulation to the Real World.

Tzeng*, Devin*, et al. (2016). Adapting Deep Visuomotor Representations with Weak Pairwise 
Constraints.

Bousmalis et al. (2017). Using Simulation and Domain Adaptation to Improve Efficiency of Deep 
Robotic Grasping.



How can we frame transfer learning problems?

1. “Forward” transfer: train on one task, transfer to a new task
a) Just try it and hope for the best
b) Finetune on the new task
c) Architectures for transfer: progressive networks
d) Randomize source task domain

2. Multi-task transfer: train on many tasks, transfer to a new task
a) Model-based reinforcement learning
b) Model distillation
c) Contextual policies
d) Modular policy networks

3. Multi-task meta-learning: learn to learn from many tasks
a) RNN-based meta-learning
b) Gradient-based meta-learning

more on this next time!


