
Advanced Policy Gradient Methods

Joshua Achiam

UC Berkeley, OpenAI

October 11, 2017

Joshua Achiam (UC Berkeley, OpenAI) Advanced Policy Gradient Methods October 11, 2017 1 / 41

Outline

Theory:

1 Problems with Policy Gradient Methods

2 Policy Performance Bounds

3 Monotonic Improvement Theory

Algorithms:

1 Natural Policy Gradients

2 Trust Region Policy Optimization

3 Proximal Policy Optimization

Joshua Achiam (UC Berkeley, OpenAI) Advanced Policy Gradient Methods October 11, 2017 2 / 41

The Problems with Policy Gradients

Joshua Achiam (UC Berkeley, OpenAI) Advanced Policy Gradient Methods October 11, 2017 3 / 41

Policy Gradients Review

Policy gradient algorithms try to solve the optimization problem

max
θ

J(πθ)
.

= E
τ∼πθ

[
∞∑
t=0

γtrt

]
by taking stochastic gradient ascent on the policy parameters θ, using the policy gradient

g = ∇θJ(πθ) = E
τ∼πθ

[
∞∑
t=0

γt∇θ log πθ(at |st)Aπθ (st , at)

]
.

Limitations of policy gradients:

Sample efficiency is poor
Because recycling old data to estimate policy gradients is hard

Distance in parameter space 6= distance in policy space!
What is policy space? For tabular case, set of matrices

Π =

{
π : π ∈ R|S|×|A|,

∑
a

πsa = 1, πsa ≥ 0

}
Policy gradients take steps in parameter space
Step size is hard to get right as a result

Joshua Achiam (UC Berkeley, OpenAI) Advanced Policy Gradient Methods October 11, 2017 4 / 41

Sample Efficiency in Policy Gradients

Sample efficiency for policy gradient methods is pretty poor

We throw out each batch of data immediately after just one gradient step

Why? PG is an on-policy expectation. There are two main ways of estimating it:1

Run policy in environment and collect sample trajectories, then form sample estimate.
(More stable)
Use trajectories from other policies with importance sampling. (Less stable)

1In an unbiased way.

Joshua Achiam (UC Berkeley, OpenAI) Advanced Policy Gradient Methods October 11, 2017 5 / 41

Importance Sampling Review

Importance sampling is a technique for estimating expectations using samples drawn from
a different distribution.

E
x∼P

[f (x)] = E
x∼Q

[
P(x)

Q(x)
f (x)

]
≈ 1

|D|
∑
x∈D

P(x)

Q(x)
f (x), D ∼ Q

The ratio P(x)/Q(x) is the importance sampling weight for x .

What is the variance of an importance sampling estimator?

var(µ̂Q) =
1

N
var

(
P(x)

Q(x)
f (x)

)
=

1

N

(
E

x∼Q

[(
P(x)

Q(x)
f (x)

)2
]
− E

x∼Q

[
P(x)

Q(x)
f (x)

]2
)

=
1

N

(
E

x∼P

[
P(x)

Q(x)
f (x)2

]
− E

x∼P
[f (x)]2

)
The term in red is problematic—if P(x)/Q(x) is large in the wrong places, the variance
of the estimator explodes.

Joshua Achiam (UC Berkeley, OpenAI) Advanced Policy Gradient Methods October 11, 2017 6 / 41

Importance Sampling for Policy Gradients

Here, we compress the notation πθ down to θ in some places for compactness.

g = ∇θJ(θ) = E
τ∼θ

[
∞∑
t=0

γt∇θ log πθ(at |st)Aθ(st , at)

]

= E
τ∼θ′

[
∞∑
t=0

P(τt |θ)

P(τt |θ′)
γt∇θ log πθ(at |st)Aθ(st , at)

]

Looks useful—what’s the issue? Exploding or vanishing importance sampling weights.

P(τt |θ)

P(τt |θ′)
=

µ(s0)
∏t

t′=0 P(st′+1|st′ , at′)πθ(at′ |st′)
µ(s0)

∏t
t′=0 P(st′+1|st′ , at′)πθ′(at′ |st′)

=
t∏

t′=0

πθ(at′ |st′)
πθ′(at′ |st′)

Even for policies only slightly different from each other, many small differences multiply
to become a big difference.

Big question: how can we make efficient use of the data we already have from the
old policy, while avoiding the challenges posed by importance sampling?

Joshua Achiam (UC Berkeley, OpenAI) Advanced Policy Gradient Methods October 11, 2017 7 / 41

Choosing a Step Size for Policy Gradients

Policy gradient algorithms are stochastic gradient ascent:

θk+1 = θk + αk ĝk

with step ∆k = αk ĝk .

If the step is too large, performance collapse is possible
If the step is too small, progress is unacceptably slow
“Right” step size changes based on θ

Automatic learning rate adjustment like advantage normalization, or Adam-style
optimizers, can help. But does this solve the problem?

Figure: Policy parameters on x-axis and performance on y -axis. A bad step can lead to
performance collapse, which may be hard to recover from.

Joshua Achiam (UC Berkeley, OpenAI) Advanced Policy Gradient Methods October 11, 2017 8 / 41

The Problem is More Than Step Size

Consider a family of policies with parametrization:

πθ(a) =

{
σ(θ) a = 1
1− σ(θ) a = 2

Figure: Small changes in the policy parameters can unexpectedly lead to big changes in the policy.

Big question: how do we come up with an update rule that doesn’t ever change the
policy more than we meant to?

Joshua Achiam (UC Berkeley, OpenAI) Advanced Policy Gradient Methods October 11, 2017 9 / 41

Policy Performance Bounds

Joshua Achiam (UC Berkeley, OpenAI) Advanced Policy Gradient Methods October 11, 2017 10 / 41

Relative Performance of Two Policies

In a policy optimization algorithm, we want an update step that

uses rollouts collected from the most recent policy as efficiently as possible,

and takes steps that respect distance in policy space as opposed to distance in
parameter space.

To figure out the right update rule, we need to exploit relationships between the
performance of two policies.

Relative policy performance identity: for any policies π, π′

J(π′)− J(π) = E
τ∼π′

[
∞∑
t=0

γtAπ(st , at)

]
(1)

Joshua Achiam (UC Berkeley, OpenAI) Advanced Policy Gradient Methods October 11, 2017 11 / 41

Proof of Relative Policy Performance Identity

J(π′)− J(π) = E
τ∼π′

[
∞∑
t=0

γtAπ(st , at)

]

= E
τ∼π′

[
∞∑
t=0

γt (R(st , at , st+1) + γV π(st+1)− V π(st))

]

= J(π′) + E
τ∼π′

[
∞∑
t=0

γt+1V π(st+1)−
∞∑
t=0

γtV π(st)

]

= J(π′) + E
τ∼π′

[
∞∑
t=1

γtV π(st)−
∞∑
t=0

γtV π(st)

]
= J(π′)− E

τ∼π′
[V π(s0)]

= J(π′)− J(π)

Joshua Achiam (UC Berkeley, OpenAI) Advanced Policy Gradient Methods October 11, 2017 12 / 41

What is it good for?

Can we use this for policy improvement, where π′ represents the new policy and π
represents the old one?

max
π′

J(π′) = max
π′

J(π′)− J(π)

= max
π′

E
τ∼π′

[
∞∑
t=0

γtAπ(st , at)

]

This is suggestive, but not useful yet.

Nice feature of this optimization problem: defines the performance of π′ in terms of the
advantages from π!

But, problematic feature: still requires trajectories sampled from π′...

Joshua Achiam (UC Berkeley, OpenAI) Advanced Policy Gradient Methods October 11, 2017 13 / 41

Looking at it from another angle...

In terms of the discounted future state distribution dπ, defined by

dπ(s) = (1− γ)
∞∑
t=0

γtP(st = s|π),

we can rewrite the relative policy performance identity:

J(π′)− J(π) = E
τ∼π′

[
∞∑
t=0

γtAπ(st , at)

]

=
1

1− γ E
s∼dπ

′

a∼π′

[Aπ(s, a)]

=
1

1− γ E
s∼dπ

′

a∼π

[
π′(a|s)

π(a|s)
Aπ(s, a)

]

...almost there! Only problem is s ∼ dπ
′
.

Joshua Achiam (UC Berkeley, OpenAI) Advanced Policy Gradient Methods October 11, 2017 14 / 41

A Useful Approximation

What if we just said dπ
′
≈ dπ and didn’t worry about it?

J(π′)− J(π) ≈ 1

1− γ E
s∼dπ

a∼π

[
π′(a|s)

π(a|s)
Aπ(s, a)

]
.

= Lπ(π′)

Turns out: this approximation is pretty good when π′ and π are close! But why, and how
close do they have to be?

Relative policy performance bounds: 2

∣∣J(π′)−
(
J(π) + Lπ(π′)

)∣∣ ≤ C
√

E
s∼dπ

[DKL(π′||π)[s]] (2)

If policies are close in KL-divergence—the approximation is good!

2Achiam, Held, Tamar, Abbeel, 2017

Joshua Achiam (UC Berkeley, OpenAI) Advanced Policy Gradient Methods October 11, 2017 15 / 41

What is KL-divergence?

For probability distributions P and Q over a discrete random variable,

DKL(P||Q) =
∑
x

P(x) log
P(x)

Q(x)

Properties:

DKL(P||P) = 0

DKL(P||Q) ≥ 0

DKL(P||Q) 6= DKL(Q||P) — Non-symmetric!

What is KL-divergence between policies?

DKL(π′||π)[s] =
∑
a∈A

π′(a|s) log
π′(a|s)

π(a|s)

Joshua Achiam (UC Berkeley, OpenAI) Advanced Policy Gradient Methods October 11, 2017 16 / 41

A Useful Approximation

What did we gain from making that approximation?

J(π′)− J(π) ≈ Lπ(π′)

Lπ(π′) =
1

1− γ E
s∼dπ

a∼π

[
π′(a|s)

π(a|s)
Aπ(s, a)

]

= E
τ∼π

[
∞∑
t=0

γt π
′(at |st)
π(at |st)

Aπ(st , at)

]

This is something we can optimize using trajectories sampled from the old policy π!

Similar to using importance sampling, but because weights only depend on current
timestep (and not preceding history), they don’t vanish or explode.

Something else cool—the approximation matches J(πθ)− J(πθk) to first order in policy
parameters! That is, ∇θLθk (θ)|θk is equal to policy gradient:

∇θLθk (θ)|θk = E
τ∼πθk

[
∞∑
t=0

γt
∇θπθ(at |st)|θk
πθk (at |st)

Aπθk (st , at)

]

= E
τ∼πθk

[
∞∑
t=0

γt ∇θ log πθ(at |st)|θk A
πθk (st , at)

]
Joshua Achiam (UC Berkeley, OpenAI) Advanced Policy Gradient Methods October 11, 2017 17 / 41

Recommended Reading

“Approximately Optimal Approximate Reinforcement Learning,” Kakade and
Langford, 2002 3

“Trust Region Policy Optimization,” Schulman et al. 2015 4

“Constrained Policy Optimization,” Achiam et al. 2017 5

3https://people.eecs.berkeley.edu/ pabbeel/cs287-fa09/readings/KakadeLangford-icml2002.pdf
4https://arxiv.org/pdf/1502.05477.pdf
5https://arxiv.org/pdf/1705.10528.pdf

Joshua Achiam (UC Berkeley, OpenAI) Advanced Policy Gradient Methods October 11, 2017 18 / 41

https://arxiv.org/pdf/1502.05477.pdf
https://arxiv.org/pdf/1705.10528.pdf

Monotonic Improvement Theory

Joshua Achiam (UC Berkeley, OpenAI) Advanced Policy Gradient Methods October 11, 2017 19 / 41

Monotonic Improvement Theory

From the bound on the previous slide, we get

J(π′)− J(π) ≥ Lπ(π′)− C
√

E
s∼dπ

[DKL(π′||π)[s]].

Cool: If we maximize the RHS with respect to π′, we are guaranteed to improve
over πππ.

This is a majorize-maximize algorithm w.r.t. the true objective, the LHS.

Cooler: Lπ(π′) and the KL-divergence term can both be estimated with samples
from π!

Joshua Achiam (UC Berkeley, OpenAI) Advanced Policy Gradient Methods October 11, 2017 20 / 41

Monotonic Improvement Theory

Proof of improvement guarantee: Suppose πk+1 and πk are related by

πk+1 = arg max
π′
Lπk (π′)− C

√
E

s∼dπk
[DKL(π′||πk)[s]].

πk is a feasible point, and the objective at πk is equal to 0.
Lπk (πk) ∝ E

s,a∼dπk ,πk

[Aπk (s, a)] = 0

DKL(πk ||πk)[s] = 0

=⇒ optimal value ≥ 0

=⇒ by the performance bound, J(πk+1)− J(πk) ≥ 0

Joshua Achiam (UC Berkeley, OpenAI) Advanced Policy Gradient Methods October 11, 2017 21 / 41

Approximate Monotonic Improvement

πk+1 = arg max
π′
Lπk (π′)− C

√
E

s∼dπk
[DKL(π′||πk)[s]]. (3)

Problem:

C provided by theory is quite high when γ is near 1

=⇒ steps from (3) are too small.

Solution:

Instead of KL penalty, use KL constraint (called trust region).

Can control worst-case error through constraint upper limit!

πk+1 = arg max
π′
Lπk (π′)

s.t. E
s∼dπk

[
DKL(π′||πk)[s]

]
≤ δ

(4)

Joshua Achiam (UC Berkeley, OpenAI) Advanced Policy Gradient Methods October 11, 2017 22 / 41

Approximate Monotonic Improvement

πk+1 = arg max
π′
Lπk (π′)

s.t. E
s∼dπk

[
DKL(π′||πk)[s]

]
≤ δ

(4)

This policy optimization step satisfies the two conditions we wanted:

The objective and constraint can be estimated using rollouts from the most recent
policy—efficient!

From the constraint, steps respect (a notion of) distance in policy space!
Update is parametrization-invariant.

As a result: the basis of many algorithms!

Joshua Achiam (UC Berkeley, OpenAI) Advanced Policy Gradient Methods October 11, 2017 23 / 41

Algorithms

Joshua Achiam (UC Berkeley, OpenAI) Advanced Policy Gradient Methods October 11, 2017 24 / 41

Natural Policy Gradient

So we have this nice optimization problem:

πk+1 = arg max
π′
Lπk (π′)

s.t. D̄KL(π′||πk) ≤ δ
(4)

but how do we solve it? Solution: approximately!

Lθk (θ) ≈ Lθk (θk) + gT (θ − θk) g
.

= ∇θLθk (θ) |θk

D̄KL(θ||θk) ≈ 1

2
(θ − θk)TH(θ − θk) H

.
= ∇2

θD̄KL(θ||θk) |θk

Note: zeroth and first-order terms for D̄KL are zero at θk .

θk+1 = arg max
θ

gT (θ − θk)

s.t.
1

2
(θ − θk)TH(θ − θk) ≤ δ

Solution to approximate problem:

θk+1 = θk +

√
2δ

gTH−1g
H−1g

Joshua Achiam (UC Berkeley, OpenAI) Advanced Policy Gradient Methods October 11, 2017 25 / 41

Properties of the Natural Policy Gradient

Recall that ∇θLθk (θ)|θk is equal to the policy gradient—so this update gives a

policy gradient algorithm where we pre-multiply by H−1.

The KL-divergence Hessian H is equal to a special matrix called the Fisher
information matrix, which comes up in a few other places:

H = E
s,a∼θk

[
∇θ log πθ(a|s)|θk ∇θ log πθ(a|s)|Tθk

]

The NPG direction H−1g is covariant—that is, it points in the same direction
regardless of the parametrization used to compute it.

Joshua Achiam (UC Berkeley, OpenAI) Advanced Policy Gradient Methods October 11, 2017 26 / 41

Covariance of the Natural Policy Gradient (Can Skip)

What does it mean for something to be covariant?

In a Reimannian space, the distance between points v and v + δv is given by

dist2(v , v + δv) = δvTG(v)δv

where G is the metric tensor. (Note: G depends on where in the space you are!)

A (true, mathematical) tensor is more than just a matrix. It has components (like
a matrix) but they depend on the coordinates in which you express the space.

Example:
Euclidean 2-space R2 can be expressed in Cartesian (x , y), or polar coordinates (r , θ).
For Cartesian coordinates, the metric tensor is just the identity.
For polar coordinates, the metric tensor is diag

(
1, r2

)
:

x = r cos θ =⇒ δx = cos θδr − r sin θδθ

y = r sin θ =⇒ δy = sin θδr + r cos θδθ

dist2(v , v + δv) = δx2 + δy2

=
(
cos2 θδr2 + r2 sin2 θδθ2 − 2r sin θ cos θδrδθ

)
+
(
sin2 θδr2 + r2 cos2 θδθ2 + 2r sin θ cos θδrδθ

)
= δr2 + r2δθ2

= (δr , δθ)Tdiag
(
1, r2

)
(δr , δθ)

Joshua Achiam (UC Berkeley, OpenAI) Advanced Policy Gradient Methods October 11, 2017 27 / 41

Covariance of the Natural Policy Gradient (Can Skip)

Consider the same vector and vector difference in two coordinate systems:

In system 1 (v), we write (v , δv), and the metric tensor is written as Gv

In system 2 (w), we write (w , δw), and the metric tensor is written as Gw

Note: v = wv = wv = w , but we are just writing the same vector with different parametrization.
Because the deltas are also equal (δv = δwδv = δwδv = δw), their components are related by:

δvi =
∑
j

∂vi
∂wj

δwj =⇒ δv = AT δw , where Aji =
∂vi
∂wj

The distances must be the same in both, so metrics are related as follows:

dist2(v , v + δv) = dist2(w ,w + δw)

dist2(v , v + δv) = δvTGvδv = δwTAGvA
T δw

dist2(w ,w + δw) = δwTGwδw

=⇒ Gw = AGvA
T

Gradients are related by chain rule:

[gw]j =
∂f

∂wj
=
∑
i

∂vi
∂wj

∂f

∂vi
=⇒ gw = Agv

Joshua Achiam (UC Berkeley, OpenAI) Advanced Policy Gradient Methods October 11, 2017 28 / 41

Covariance of the Natural Policy Gradient (Can Skip)

Consider ∆v = G−1
v gv∆v = G−1
v gv∆v = G−1
v gv , and ∆w = G−1

w gw∆w = G−1
w gw∆w = G−1
w gw . Are these the same vector in different

coordinates?

If they are, from AT δw = δv , they will satisfy AT∆w = ∆v .

∆w = G−1
w gw

= (AGvA
T)−1Agv

= (AT)−1G−1
v A−1Agv

= (AT)−1G−1
v gv

∴ AT∆w = ∆v

They are indeed the same vector!

The punchline: the FIM, H, in the natural policy gradient, is the metric tensor for
policy space.6

Thus the natural policy gradient H−1g is invariant to parametrization, as shown above.

6Peters, Vijayakumar, Schaal, 2005.

Joshua Achiam (UC Berkeley, OpenAI) Advanced Policy Gradient Methods October 11, 2017 29 / 41

Natural Policy Gradient

Algorithm 1 Natural Policy Gradient

Input: initial policy parameters θ0

for k = 0, 1, 2, ... do
Collect set of trajectories Dk on policy πk = π(θk)
Estimate advantages Âπk

t using any advantage estimation algorithm
Form sample estimates for

policy gradient ĝk (using advantage estimates)

and KL-divergence Hessian / Fisher Information Matrix Ĥk

Compute Natural Policy Gradient update:

θk+1 = θk +

√
2δ

ĝT
k Ĥ−1

k ĝk
Ĥ−1

k ĝk

end for

Joshua Achiam (UC Berkeley, OpenAI) Advanced Policy Gradient Methods October 11, 2017 30 / 41

Truncated Natural Policy Gradient

Problem: for neural networks, number of parameters N is large—thousands or millions.
Hessian has size N2 (expensive to store) and matrix inversion complexity is O(N3)

Solution: use the conjugate gradient (CG) algorithm to compute H−1g without
inverting H.

With j iterations, CG solves systems of linear equations Hx = g for x by finding
projection onto Krylov subspace, span{g ,Hg ,H2g , ...,H j−1g}
For CG, only matrix-vector product function f (v) = Hv is necessary—and this, we
can do:7

kl = ... # define KL divergence as function of vars theta
v = tf.placeholder(dtype=tf.float32, shape=[N])
kl_gradient = tf.gradients(kl, theta)
kl_gradient_vector_product = tf.sum(kl_gradient * v)
kl_hessian_vector_product = tf.gradients(kl_gradient_vector_product, theta)

Natural Policy Gradient with fixed-iteration CG as inner loop is called Truncated
Natural Policy Gradient (TNPG)

See Wu et al. 2017 (ACKTR algorithm) for an alternate solution to this problem

7Wright and Nocedal, Numerical Optimization, 1999

Joshua Achiam (UC Berkeley, OpenAI) Advanced Policy Gradient Methods October 11, 2017 31 / 41

Trust Region Policy Optimization

Small problems with NPG update:

Might not be robust to trust region size δ; at some iterations δ may be too large and
performance can degrade
Because of quadratic approximation, KL-divergence constraint may be violated

Solution:

Require improvement in surrogate (make sure that Lθk (θk+1) ≥ 0)
Enforce KL-constraint

How? Backtracking line search with exponential decay (decay coeff α ∈ (0, 1), budget L)

Algorithm 2 Line Search for TRPO

Compute proposed policy step ∆k =
√

2δ

ĝT
k
Ĥ−1
k

ĝk
Ĥ−1

k ĝk

for j = 0, 1, 2, ..., L do
Compute proposed update θ = θk + αj∆k

if Lθk (θ) ≥ 0 and D̄KL(θ||θk) ≤ δ then
accept the update and set θk+1 = θk + αj∆k

break
end if

end for

Joshua Achiam (UC Berkeley, OpenAI) Advanced Policy Gradient Methods October 11, 2017 32 / 41

Trust Region Policy Optimization

Trust Region Policy Optimization is implemented as TNPG plus a line search. Putting
it all together:

Algorithm 3 Trust Region Policy Optimization

Input: initial policy parameters θ0

for k = 0, 1, 2, ... do
Collect set of trajectories Dk on policy πk = π(θk)
Estimate advantages Âπk

t using any advantage estimation algorithm
Form sample estimates for

policy gradient ĝk (using advantage estimates)

and KL-divergence Hessian-vector product function f (v) = Ĥkv

Use CG with ncg iterations to obtain xk ≈ Ĥ−1
k ĝk

Estimate proposed step ∆k ≈
√

2δ

xT
k
Ĥk xk

xk

Perform backtracking line search with exponential decay to obtain final update

θk+1 = θk + αj∆k

end for

Joshua Achiam (UC Berkeley, OpenAI) Advanced Policy Gradient Methods October 11, 2017 33 / 41

Empirical Performance for TNPG / TRPO

0 100 200 300 400 500

0

500

1000

1500

2000
ddpg
tnpg
erwr
trpo

reinforce
reps
cem
cma_es

Figure: Comparison between various methods for deep RL including TNPG and TRPO on
Walker-2d task. Showing average scores over 5 seeds for each method. 8

8Duan, Chen, Houthooft, Schulman, Abbeel, 2016

Joshua Achiam (UC Berkeley, OpenAI) Advanced Policy Gradient Methods October 11, 2017 34 / 41

Proximal Policy Optimization

Proximal Policy Optimization (PPO) is a family of methods that approximately enforce
KL constraint without computing natural gradients. Two variants:

Adaptive KL Penalty
Policy update solves unconstrained optimization problem

θk+1 = arg max
θ
Lθk (θ)− βk D̄KL(θ||θk)

Penalty coefficient βk changes between iterations to approximately enforce
KL-divergence constraint

Clipped Objective
New objective function: let rt(θ) = πθ(at |st)/πθk (at |st). Then

LCLIPθk
(θ) = E

τ∼πk

[
T∑
t=0

[
min(rt(θ)Â

πk
t , clip (rt(θ), 1− ε, 1 + ε) Â

πk
t)
]]

where ε is a hyperparameter (maybe ε = 0.2)
Policy update is θk+1 = arg maxθ LCLIPθk

(θ)

Joshua Achiam (UC Berkeley, OpenAI) Advanced Policy Gradient Methods October 11, 2017 35 / 41

Proximal Policy Optimization with Adaptive KL Penalty

Algorithm 4 PPO with Adaptive KL Penalty

Input: initial policy parameters θ0, initial KL penalty β0, target KL-divergence δ
for k = 0, 1, 2, ... do

Collect set of partial trajectories Dk on policy πk = π(θk)
Estimate advantages Âπk

t using any advantage estimation algorithm
Compute policy update

θk+1 = arg max
θ
Lθk (θ)− βkD̄KL(θ||θk)

by taking K steps of minibatch SGD (via Adam)
if D̄KL(θk+1||θk) ≥ 1.5δ then
βk+1 = 2βk

else if D̄KL(θk+1||θk) ≤ δ/1.5 then
βk+1 = βk/2

end if
end for

Initial KL penalty not that important—it adapts quickly

Some iterations may violate KL constraint, but most don’t

Joshua Achiam (UC Berkeley, OpenAI) Advanced Policy Gradient Methods October 11, 2017 36 / 41

Proximal Policy Optimization with Clipped Objective

Algorithm 5 PPO with Clipped Objective

Input: initial policy parameters θ0, clipping threshold ε
for k = 0, 1, 2, ... do

Collect set of partial trajectories Dk on policy πk = π(θk)
Estimate advantages Âπk

t using any advantage estimation algorithm
Compute policy update

θk+1 = arg max
θ
LCLIP
θk (θ)

by taking K steps of minibatch SGD (via Adam), where

LCLIP
θk (θ) = E

τ∼πk

[
T∑
t=0

[
min(rt(θ)Âπk

t , clip (rt(θ), 1− ε, 1 + ε) Âπk
t)
]]

end for

Clipping prevents policy from having incentive to go far away from θk+1

Clipping seems to work at least as well as PPO with KL penalty, but is simpler to
implement

Joshua Achiam (UC Berkeley, OpenAI) Advanced Policy Gradient Methods October 11, 2017 37 / 41

Proximal Policy Optimization with Clipped Objective

But how does clipping keep policy close? By making objective as pessimistic as possible
about performance far away from θk :

Figure: Various objectives as a function of interpolation factor α between θk+1 and θk after one
update of PPO-Clip 9

9Schulman, Wolski, Dhariwal, Radford, Klimov, 2017

Joshua Achiam (UC Berkeley, OpenAI) Advanced Policy Gradient Methods October 11, 2017 38 / 41

Empirical Performance of PPO

Figure: Performance comparison between PPO with clipped objective and various other deep RL
methods on a slate of MuJoCo tasks. 10

10Schulman, Wolski, Dhariwal, Radford, Klimov, 2017

Joshua Achiam (UC Berkeley, OpenAI) Advanced Policy Gradient Methods October 11, 2017 39 / 41

Recommended Reading

Natural Gradients / Natural Policy Gradients

“Why Natural Gradient?” S. Amari and S. C. Douglas, 1998 11

“A Natural Policy Gradient,” Sham Kakade, 2001 12

“Reinforcement Learning of Motor Skills with Policy Gradients,” Jan Peters and
Stefan Schaal, 2008 13

11http://www.yaroslavvb.com/papers/amari-why.pdf
12https://papers.nips.cc/paper/2073-a-natural-policy-gradient.pdf
13http://www.kyb.mpg.de/fileadmin/user_upload/files/publications/attachments/

Neural-Netw-2008-21-682_4867%5b0%5d.pdf
Joshua Achiam (UC Berkeley, OpenAI) Advanced Policy Gradient Methods October 11, 2017 40 / 41

http://www.yaroslavvb.com/papers/amari-why.pdf
https://papers.nips.cc/paper/2073-a-natural-policy-gradient.pdf
http://www.kyb.mpg.de/fileadmin/user_upload/files/publications/attachments/Neural-Netw-2008-21-682_4867%5b0%5d.pdf
http://www.kyb.mpg.de/fileadmin/user_upload/files/publications/attachments/Neural-Netw-2008-21-682_4867%5b0%5d.pdf

Recommended Reading

TRPO / PPO

“Trust Region Policy Optimization,” Schulman et al. 2015 14

“Benchmarking Deep Reinforcement Learning for Continuous control,” Duan et al.
2016 15

“Proximal Policy Optimization Algorithms,” Schulman et al. 2017 16

OpenAI blog post on PPO, 2017 17

“Emergence of Locomotion Behaviours in Rich Environments,” Heess et al. 2017 18

“Scalable trust-region method for deep reinforcement learning using
Kronecker-factored approximation,” Wu et al. 2017 19

14https://arxiv.org/pdf/1502.05477.pdf
15https://arxiv.org/pdf/1604.06778.pdf
16https://arxiv.org/pdf/1707.06347.pdf
17https://blog.openai.com/openai-baselines-ppo/
18https://arxiv.org/pdf/1707.02286.pdf
19https://arxiv.org/pdf/1708.05144.pdf

Joshua Achiam (UC Berkeley, OpenAI) Advanced Policy Gradient Methods October 11, 2017 41 / 41

https://arxiv.org/pdf/1502.05477.pdf
https://arxiv.org/pdf/1604.06778.pdf
https://arxiv.org/pdf/1707.06347.pdf
https://blog.openai.com/openai-baselines-ppo/
https://arxiv.org/pdf/1707.02286.pdf
https://arxiv.org/pdf/1708.05144.pdf

	The Problems with Policy Gradients
	Policy Performance Bounds
	Monotonic Improvement Theory
	Algorithms

