Inverse Reinforcement
Learning

CS 294-112: Deep Reinforcement Learning

Sergey Levine

Class Notes

1. Project proposal due today at 11:59 pm!
2. Homework 4 due next week
3. After that, just the project left!

Today’s Lecture

So far: manually design reward function to define a task

2. What if we want to learn the reward function from observing an
expert, and then use reinforcement learning?

3. Apply approximate optimality model from last week, but now
learn the reward!

e Goals:

* Understand the inverse reinforcement learning problem definition

* Understand how probabilistic models of behavior can be used to derive
inverse reinforcement learning algorithms

* Understand a few practical inverse reinforcement learning algorithms we
can use

Where does the reward function come from?

Computer Games Real World Scenarios
reward

robotics dialog autonomous driving

— - g
- - %

Mnih et al. ‘15 what is the reward?
often use a proxy

frequently easier to provide expert data
Inverse reinforcement learning: infer reward function from roll-outs of expert policy

slides adapted from C. Finn

Why should we learn the reward?

Alternative: directly mimic the expert (behavior cloning)
- simply "ape” the expert’'s motions/actions

- doesn't necessarily capture the salient parts of the behavior
- what if the expert has different capabilities?

Can we reason about what the expert is trying to achieve instead?

€ Wameken & Tomasello

slides adapted from C. Finn

Inverse Optimal Control / Inverse Reinforcement Learning:
infer reward function from demonstrations

(IOC/IRL) (Kalman ‘64, Ng & Russell '00)
given: goal:
- state & action space - recover reward function
- samples from 1t* - then use reward to get policy

- dynamics model (sometimes)

Challenges
underdefined problem
difficult to evaluate a learned reward
demonstrations may not be precisely optimal

A A

slides adapted from C. Finn

A bit more formally

“forward” reinforcement learning

given:
states s € S, actions a € A
(sometimes) transitions p(s’|s, a)

reward function (s, a)

learn 7*(als)

inverse reinforcement learning

given:
states s € S, actions a € A
(sometimes) transitions p(s’|s, a)

samples {7;} sampled from 7*(7)

learn 7, (s, a)

k—— reward parameters
s)

...and then use it to learn 7*(a

neural net reward function:

linear reward function:

ry(s,a) =32 ¥ifi(s,a) = ¢ "f(s, a)

Ty (Sa a)
- ¢ parameters ¥

Feature matching IRL

linear reward function:

ro(s.a) = X, fi(s.) = 78 (s, a) y© N\

if features f are important, what if we match their expectations?

let 7" be the optimal policy for ry

pick ¥ such that B, [f(s,a)] = Ex-[f(s, a)] still ambiguous!
7 \
state-action marginal under 7" _ 1nown optimal policy

approximate using expert samples
maximum margin principle:

max m such that ¢! . [f(s,a)] > max V! EL[f(s,a)] +m

|
need to somehow “weight” by similarity between 7n* and

Feature matching IRL & maximum margin

remember the “SVM trick”:

max m such that ! E . [f(s,a)] > max V! EL[f(s,a)] + m
=

P, m
1

min = [[¢||* such that y! E.«[f(s,a)] > meaﬁcszEw [f(s,a)] + D(w, ")

P 2 7r
\

e.g., difference in feature expectations!

Issues:

« Maximizing the margin is a bit arbitrary

* No clear model of expert suboptimality (can add slack variables...)

« Messy constrained optimization problem — not great for deep learning!

Further reading:
« Abbeel & Ng: Apprenticeship learning via inverse reinforcement learning

 Ratliff et al: Maximum margin planning

Optimal Control as a Model of Human Behavior

(a) setup

-

11380011982
oL Tm
A R T T T Y 1 [E .
Muybridge (c. 1870) Mombaur et al. ‘09 Li & Todorov ‘06 Ziebart ‘08

T
ai,...,ar = arg max E r(s¢, ay)
t=1

al,.... AT

sir1 = f(s¢, ay) optimize this to explain the data

T = artglnax Es, 1 ~op(sis|se,an),ac~m(arls,) [T (Sts at)]

ap ~~ 7T(at|St)

A probabilistic graphical model of decision making

p(s1.7,a1.7) =?? noassumption of optimal behavior!

~

T

p(7|O01.7) p(O4lsy, ay) o< exp(r(ss, ar))
. P(’T, Ol:T)
PrIOLT) = = 60)

x p(T) H exp(r(s¢,a:)) = p(7) exp (Z r(St, at))

t

Learning the optimality variable

P(Otlst, a) ¥ expln((s:(St)) given:
. *
L—— reward parameters Samples {Tz} Sampled from 7 (’T)

p(7]O1.1,0) x %exp (Z Tw(st,at)) \

can ignore (independent of)

1 N

N
1
maximum likelihood learning: max — log p(7;|O1.7, 1Y) = max — ro(T;) — log Z
g wNZ g p(73|O1.1,) 2 Y ry(ri) —log

i=1 N3 X
partition function
(the hard part)

The IRL partition function

1 N

max - Z ry (i) — log Z 7 = /p('r) exp(ry(7))dT

Vil = 1 3 Vara(m) - 5 [o) explra(r) Vurs(rir

p(’T|Ol:T77/))

VL = Erone () [Vyry (1)) — Erop(r|0nm,0) [Vpry (T)]

’ \

estimate with expert samples soft optimal policy under current reward

Estimating the expectation

VL = Erone () [Vyry (1)) — Erop(r|0nm,0) [Vpry (T)]

V¢ Z T3y (St, at)]

t=1

ETNP(T|(91:T7¢)

T
- Z E(St,at)wp(st,at|(91:T,1p) [V%DTIP (Stﬂ at)]
t=1

p(ag|se, Or.1, ¥)p(st|Or.1,) where have we seen this before?
/ N\
_ Blsiar) x a(se)B(st)
/B(St)

p(at|st7 01:T7¢)p(5t|01:T, w) X 5(51:; at)Oé(St)
/ N

backward message forward message

Estimating the expectation

VLl = Erne () [Vory (7)) = Erp(r|0.0,0) [VoTy (T)] let pi(se, at) o< B(st, ar)a(st)

T
Z/[Mt(staat)v¢r¢(8t,at)dStdat

t=1

state-action visitation probability for each (s;, a;)

The MaxEnt IRL algorithm

1. Given 1, compute backward message 3(s¢,a;) (see previous lecture)
2. Given 9, compute forward message a(s;) (see previous lecture)
3. Compute pt(st, ar) oc B(st, ar)a(st)

4. Evaluate VL = % Zfll Zthl Vory(Sit, ai,t)—zz;l [| pe(se,ar)Vry(se, ar)dsiday
5. Y Y +nVyL

Why MaxEnt?

in the case where 74 (s¢,a;) = ¢! f(s;,a;), we can show that it optimizes

max H(7w"*) such that E_ry [f] = E «[f] as random as possible
v N\ while matching features
optimal max-ent policy under r¥ unknown expert policy

estimated with samples , , ,)
Ziebart et al. 2008: Maximum Entropy Inverse Reinforcement Learning

Case Study: MaxEnt IRL for road navigation
MaxEnt IRL with hand-designed features for learning to navigate
in urban environments based on taxi cab GPS data.

Maximum Entropy Inverse Reinforcement Learning

Brian D. Ziebart, Andrew Maas, J.Andrew Bagnell, and Anind K. Dey

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

bziebart@cs.cmu.edu, amaas @andrew.cmu.edu, dbagnell @ri.cmu.edu, anind @cs.cmu.edu

Feature Value Feature Value

Highway 3.3 miles Hard left turn 1

Dest. 5 Major Streets | 2.0 miles Soft left turn 3

Local Streets | 0.3 miles Soft right turn 5

Above 55mph | 4.0 miles Hard right turn 0

35-54mph 1.1 miles No turn 25

gPest. 2 2534 mph | 0.5 miles U-turn 0
- Below 24mph | 0 miles
Path so far 3+ Lanes 0.5 miles
2 Lanes 3.3 miles
1 Lane 1.8 miles

Dest. 3

Dest. 4

Case Study: MaxEnt Deep IRL
MaxEnt IRL with known dynamics (tabular setting), neural net cost

Maximum Entropy Deep Inverse Reinforcement Learning

Markus Wulfmeier MARKUS @ROBOTS.0X.AC.UK
Peter Ondriska ONDRUSKA @ROBOTS.0X.AC.UK
Ingmar Posner INGMAR @ROBOTS.0X.AC.UK

Mobile Robotics Group, Department of Engineering Science, University of Oxford

NIPS Deep RL workshop 2015

Watch This: Scalable Cost-Function Learning
for Path Planning in Urban Environments

Markus Wulfmeier!, Dominic Zeng Wang! and Ingmar Posner!

IROS 2076

slides adapted from C. Finn

Case Study: MaxEnt Deep IRL
MaxEnt IRL with known dynamics (tabular setting), neural net cost

Algorithm 1 Maximum Entropy Deep IRL

Input: u%, f, S, A, T,y

Output: optimal weights 6*

Feature
Representation

Hidden i
Representations

Cost Map

9:

3:

8:

1: 8 = initialise_weights()

Iterative model refinement

2: forn=1: Ndo

r™ = nn_forward(f,8")

Solution of MDP with current reward
m™ = approx._value_iteration(r", S, A, T, v)

E[p"] = propagate_policy (7", S, A,T)

Determine Maximum Entropy loss and gradients
L% =log(m™) x u}

aLw
a2 = pp — E[u"]

Compute network gradients

arn SJC“Q
ﬁgﬁ = nn_backprop(f, 6", arn)

g"*+! = update_weights(6", ?BE:)
D

10: end for

Need to iteratively solve MDP for every weight update

slides adapted from C. Finn

Case Study: MaxEnt Deep IRL
MaxEnt IRL with known dynamics (tabular setting), neural net cost

2 x Velodyne HDL-32E N 2

mean height height variance cell visibility

120km of demonstration data
20

test-set trajectory prediction:

r?"'.: Prediction Standard| Pooling | MS Manual

manually metrics FCN |FCN |FCN | CF

deS|gned Cost NLL 69.35 69.73 65.39 78.13
r.,_ MHD 0.221 0.230 0.200 0.284

MHD: modified Hausdorff distance
slides adapted from C. Finn

Case Study: MaxEnt Deep IRL
MaxEnt IRL with known dynamics (tabular setting), neural net cost

Strengths
- scales to neural net costs

Limitations
- still need to repeatedly solve the MDP

- assumes known dynamics
21

slides adapted from C. Finn

Break

What about larger RL problems?

- MaxEnt IRL: probabilistic framework for learning reward
functions

- Computing gradient requires enumerating state-action
visitations for all states and actions

. Only really viable for small, discrete state and action spaces

- Amounts to a dynamic programming algorithm (exact forward-
backward inference)

. For deep IRL, we want two things:
- Large and continuous state and action spaces
. Effective learning under unknown dynamics

Unknown dynamics & large state/action spaces

Assume we don't know the dynamics, but we can sample, like in standard RL

recall:

VL = Erone () [Vyry (1)) — Erop(r|0nm,0) [Vpry (T)]

’ \

estimate with expert samples soft optimal policy under current reward

idea: learn p(a;|s;, O1.7,%) using any max-ent RL algorithm
then run this policy to sample {7}

1 & 1 &
Vol ~ > Vyry(m) - i > Vyry (7))
i=1 j=1

’ \

sum over expert samples sum over policy samples

More efficient sample-based updates

1 & 1 <
Vol ~ > Vyry(mi) — i > Vyry(T)
i=1 j=1

’ \

sum over expert samples sum over policy samples

improve leesw p(a;|s;, O1.7,1) using any max-ent RL algorithm

littl
“HM9 " then run this policy to sample {7;}

looks expensive! what if we use “lazy” policy optimization?

problem: estimator is now biased! wrong distribution!

solution: use importance sampling

j Wi m(75)

1 Y 1 M exp(74 (7))
Vol Vyry(ri) - > > wiVyry(T)) wj = —
i=1

g=1

Importance sampling

1 j— exp(ry (7))
Vol ~ > Vyry(m) — > wVyry(7)) wj = —
i=1

2.5 Wi 4= (7))
\
ptsa) [1, DSTrrse-as) exp(ry (st at))
Dtsq) | [, Psrrriseag)m(ag|s)

_ exp(Qu, (s ar))
which sampling distribution 7 (7) is best? 11, m(at|s:)

optimal IS distribution q(z) for E,)[f(x)] is q(x) o< |f(z)|p(x)

in our case, optimal 7 is therefore 7(7) o< exp(ry (7))

\

max-ent optimal policy for ry

each policy update w.r.t. r, brings us closer to the optimal distribution!

guided cost learning algorithm
(Finn et al. ICML "16)

initial human
policy Tt demonstrations

generate policy (®) (@)

: @.D @ \\
samples from T % - — ;

D) L | @ e ®
Update reward using

\/Sanples & demos

update 1 w.r.t. reward
policy Tt reward r

. el
1 J

N
VL~ N ; V7 (Ti) >, w; 2 WiV oy (T5) J

slides adapted from C. Finn

Guided Cost Learning Experiments

Real-world Tasks
dish placement pouring almonds

Fg—g

state includes unsupervised
visual features [Finn et al. '16]

state includes goal plate pose

Comparison

Relative Entropy IRL
(Boularias et al. ‘11)

slides adapted from C. Finn

Comparisons
Path Integral IRL Relative Entropy IRL
(Kalakrishnan et al. ‘13) (Boularias et al. '11)

initial human
distribution q, demonstrations

generate policy)
samples from g @ E e

&)
k Update reward using

samples & demos

}

reward r

slides adapted from C. Finn

Dish placement, standard reward

slides adapted from C. Finn

Dish placement, RelEnt IRL

slides adapted from C. Finn

Dish placement, GCL policy

slides adapted from C. Finn

Pouring, demos

.

. W
v—L f o

Demo 2 (0f20)

slides adapted from C. Finn

Pouring, RelEnt IRL

autonomous execution Hes.se j
Ix real-time | '

slides adapted from C. Finn

Pouring, GCL policy

autonomous execution
Ix real-time

slides adapted from C. Finn

Aside: Generative Adversarial Networks
(Goodfellow et al. "14)

Similar to inverse RL, GANSs learn an objective for generative modeling.

' ‘} Rl | 7
’ ' 0

X . =
B \ ~
~ |

Arjovsky et al. "17 Isola et al. "17

trajectoryt €—> sample x
Inverse RL policy m~q(t) €—> ¢generator G GANSs

reward r —3 discriminator D

(Finn*, Christiano?*, et al. "16)

Connection to Generative Adversarial Networks

trajectory v €—> sample x

inverse RL policy m~q(t) €—> generator G GANSs

rewardr —— discriminator D
data distribution p

Reward/discriminator optimization:

e~ p(7)
P =) a0
D?P (7_) _ % eXp(RTP)

7z exp(Ry) +q(7)
Ediscriminator(w) — ’TNP[log D¢()] -+ qu[log(l — Dl,b())]

(Finn*, Christiano*, et al. "16)

Connection to Generative Adversarial Networks

trajectory v €—> sample x

Inverse RL policy m~q(t) €—> generator G GANSs

rewardr —— discriminator D
data distribution p

Policy/generator optimization:

Lgenerator (0) = Erngllog(l — Dy (7)) — log Dy, (7)]
= E,;qllogq(T) +log Z — Rw('r)]"N

entropy-reqgularized RL

Unknown dynamics: train generator/policy with RL

Baram et al. ICML "17: use learned dynamics model to backdrop through discriminator
(Finn*, Christiano*, et al. '16)

guided cost learning algorithm
(Finn et al. ICML "16)

initial human
policy Tt demonstrations

generate policy f@\\
samples from T :

Lgenerator | ' : @,/
Update reward using

_/Sa(nples & demos
l l discriminator |

update 1t w.r.t. reward
policy t take 1 policy opt. step reward r

Update reward in inner loop of policy optimization

slides adapted from C. Finn

IRL as adversarial optimization

Guided Cost Learning Generative Adversarial Imitation Learning
ICML 2016 Ho & Ermon, NIPS 2016 . 5 i
Humanoid expert policies
L . . . Run forwards Run backwards Balance
minimized maximized False True
reward function classifier
Hausman, Chebotar, Schaal, Sukhatme, Lim
human human
demonstrations demonstrations
robot attempt robot attempt

learns distribution p(7) such that D(7) = probability 7 is a demo

demos have max likelihood

« ” 4
p(7) o< exp(r(7)) (MaxEnt model) use log D(7) as “reward Imitation ofrIRGEEREEBRIR o
1
Jooir(r) N

1 actually the
z xp(r(7)) + 7(7) same thing!

Merel, Tassa, TB, Srinivasan, Lemmon, Wang, Wayne, Heess

D(t) = D(1) = some classifier

Generative Adversarial Imitation Learning Experiments
(Ho & Ermon NIPS ‘16)

learned behaviors from human motion capture
Merel et al. 17

walking falling & getting up

slides adapted from C. Finn

IRL = generative adversarial networks =
energy-based models

Guided cost learning optimizes MaxEnt IRL involves optimizing
the MaxEnt IRL objective: an energy-based model

p(7) x exp(r(7)) (MaxEnt model)

\/ energy

This is exactly the same as GAN GANs are energy-based models
with this discriminator:

~ exp(r(7))

P = T elr(r)) + 707

Finn*, Christiano®, Abbeel, L. ‘16

Review

IRL: infer unknown reward from expert demonstrations
MaxEnt IRL: infer reward by learning under the control-as-inference framework

MaxEnt IRL with dynamic programming: simple and efficient, but requires small
state space and known dynamics

Differential MaxEnt IRL: good for large, continuous spaces, but requires known
dynamics and is local

Sampling-based MaxEnt IRL: generate samples to estimate the partition function
Guided cost learning algorithm
Connection to generative adversarial networks

Generative adversarial imitation learning (not IRL per se, but very similar)

Suggested Reading on Inverse RL

Classic Papers:

Abbeel & Ng ICML '04. Apprenticeship Learning via Inverse Reinforcement
Learning. Good introduction to inverse reinforcement learning

Ziebart et al. AAAI '08. Maximum Entropy Inverse Reinforcement Learning.
Introduction to probabilistic method for inverse reinforcement learning

Modern Papers:

Finn et al. ICML "16. Guided Cost Learning. Sampling based method for
MaxEnt IRL that handles unknown dynamics and deep reward functions
Wulfmeier et al. arXiv '16. Deep Maximum Entropy Inverse Reinforcement
Learning. MaxEnt inverse RL using deep reward functions

Ho & Ermon NIPS "16. Generative Adversarial Imitation Learning. Inverse RL
method using generative adversarial networks

