Model-Based RL and Policy
Learning

CS 294-112: Deep Reinforcement Learning

Sergey Levine

Overview

1. Last time: learning models of system dynamics and using optimal
control to choose actions

* Global models and model-based RL
* Local models and model-based RL with constraints

2. What if we want a policy?
* Much quicker to evaluate actions at runtime
* Potentially better generalization

3. Can we just backpropagate into the policy?

Today’s Lecture

Backpropagating into a policy with learned models

How this becomes equivalent to imitating optimal control
The guided policy search algorithm

Imitating optimal control with DAgger

Al S

Model-based vs. model-free RL tradeoffs

e Goals
* Understand how to train policies using optimal control
 Understand tradeoffs between various methods

So how can we train policies?

* So far we saw how we can...
* Train global models (e.g. GPs, neural networks)
* Train local models (e.g. linear models)
 Combine global and local models (e.g. using Bayesian linear regression)

* But what if we want a policy?
* Don’t need to replan (faster)
* Potentially better generalization

Backpropagate directly into the policy?

backprop

backprop

n

easy for deterministic policies, but also possible for stochastic policy

model-based reinforcement learning version 2.0:
1. run base policy mo(u;|x;) (e.g., random policy) to collect D = {(x,u,x’);}
2. learn dynamics model f(x,u) to minimize > . || f(x;, u;) — x5
3. backpropagate through f(x,u) into the policy to optimize my(us|x¢)

4. run m(us|xy), appending the visited tuples (x,u,x’) to D

What’s the problem with backprop into policy?

backprop

backprop

" /

big gradients here small gradients here

What’s the problem?

backprop

backprop

e~

What’s the problem?

backprop

backprop

» Similar parameter sensitivity problems as shooting methods

* But no longer have convenient second order LQR-like method, because policy
parameters couple all the time steps, so no dynamic programming

e Similar problems to training long RNNs with BPTT
* Vanishing and exploding gradients

* Unlike LSTM, we can’t just “choose” a simple dynamics, dynamics are chosen by
nature

What’s the problem?

 What about collocation methods?

T

What’s the problem?

 What about collocation methods?

T

Even simpler...

T
_ generic trajectory
1min E C(Xt, ut) Ss.t. Xy = f(Xt—la 111;_1) optimization, solve
ul,...,UT,Xl,...,XT,Q t—1 howeveryou want

s.t. uy = mp(xy¢)

* How can we impose constraints on trajectory optimization?

Review: dual gradient descent

min f(x) s.t. C'(x) =0 L(x,\) = f(x)+ A (x)

X

g(A) = L(x"(A), M)
1. Find x* + arg miny, £(x, \)

— 1 E j A —— _
X a,l“g min (X) :3 Comp]]te 9 — [)\ (X A)
d d 3 E

d\ d\

A small tweak to DGD: augmented Lagrangian

m}in f(X) S.t. C(X) =0 ﬁ(x))\) — f(X) +)\C(X)
L(x,A) = f(x) + AC(x) + p[|C(x)|*

e Still converges to correct
solution

* When far from solution, 1. Find x* < are min <
guadratic term tends to ' S X f’())\)

improve stability

dg _ dL (y*
* Closely related to alternating 2. Compute d\ ~ dA (X 7)\)

direction method of d
multipliers (ADMM) 3. A= A+ O‘ﬁ

Constraining trajectory optimization with dual
gradient descent

migl c(7) s.t. up = mp(x4)
T’

L(T,0,\) =c(T)+ Z A (o (x¢) — uy)

t=1

L(1,0,)\) =c(T) + Z Ae(mo(x¢) —ug) + Z pe(mo(xy) — uy)?

t=1 t=1

Constraining trajectory optimization with dual
gradient descent

migl c(7) s.t. up = mp(x4)
T’

L(1,0,)\) =c(T) + Z Ae(mo(x¢) —ug) + Z pe(mo(xy) — uy)?

t=1 t=1

1. Find 7 < argmin, £(7,6,)\) (e.g. via iLQR)
2. Find 0 « argming £(7,0, \) (e.g. via SGD)

3.)\e)\—l—a%

Guided policy search discussion

1. Find 7 < argmin, £(7,60,\) (e.g. via iLQR)
2. Find 0 < argming £(7,0,) (e.g. via SGD)

i I d
3. A= A+ azy

e Can be interpreted as constrained trajectory optimization method

e Can be interpreted as imitation of an optimal control expert, since step
2 is just supervised learning

* The optimal control “teacher” adapts to the learner, and avoids actions
that the learner can’t mimic

General guided policy search scheme

1. Optimize p(7) with respect to some surrogate ¢(x¢, uy)
2. Optimize 6 with respect to some supervised objective

3. Increment or modify dual variables A

Need to choose:
form of p(7)
optimization method for p(7)
surrogate ¢(x, uy)
supervised objective for mg(u;|x;)

Deterministic case

migl c(7) s.t. up = mo(xy¢)
T7

L(T,0,)\) =c(T) + Z Ae(mo(x¢) —ug) + Z pe(mo(xy) — uy)?

c(T)
1. Optimize T with respect to surrogate ¢(7)

2. Optimize € with respect to supervised objective

3. Increment or modify dual variables A

Learning with multiple trajectories

Io N
“ o * Tin ZC(Ti) s.b. wy; = mo(xe,) Vi VE
\v) v T1geens TN 6 1
7 ‘<
-
AR
-

> 11

1. Optimize each 7; in parallel with respect to ¢(7;)
2. Optimize 6 with respect to supervised objective

3. Increment or modify dual variables A

Case study: learning locomotion skills

Interactive Control of Diverse Complex Characters
with Neural Networks

Igor Mordatch, Kendall Lowrey, Galen Andrew, Zoran Popovic, Emanuel Todorov
Department of Computer Science, University of Washington
{mordatch,lowrey,galen,zoran,todorov}@cs.washington.edu

Interactive Control of Diverse Complex
Characters with Neural Networks

Submitted to NIPS 2015

Stochastic (Gaussian) GPS

Hz;ligl Erpryle(T)] st p(ug|xy) = mo(uex¢)

plug|xs) = N (Ke(xe — X¢) + kg + 0y, 2¢)

T

Y e)] s Dia r)p(o) < e
t=1

1. Optimize p(7) with respect to some surrogate ¢(x;, u;)

2. Optimize 6 with respect to some supervised objective

3. Increment or modify dual variables A

Stochastic (Gaussian) GPS with local models

run p(ug|x;)
> on robot
/ collect D = {7;}

NG

)

 next train my(u;|oy)
1teration Py — 5\ <z (@
A ﬁt dynamiCS %{; %
p(X¢r1]Xe, uy) =

N[

Robotics Example

Input Remapping Trick

Igigl Erp(ryle(T)] s.b. p(ug|xe) = mo(us [s:)

training time test time

CNN Vision-Based Policy

RGB image convi conv2 conv3

spatial softmax feature motor
. . points torques
7 * 32 filters istributions| ™.

X7 conv : fully fully fully ¢
stride 2 5x5 conv expected connected [| connected connected !
RelU RelU 2D position ReLU RelLU linear
240

17 — 109 64 40 40 7
robot
configuration
39

Case study: vision-based control with GPS

End-to-End Training of Deep Visuomotor Policies

Sergey Levine! SVLEVINEEECS. BERKELEY .EDU
Chelsea Finn' CBFINNTGEECS. BERKELEY .EDU
Trevor Darrell TREVORBEECS. BERKELEY .EDU
Pieter Abbeel PABBEEL{IEECS. BERKELEY .EDU

Division af Computer Science
University of California
Berkeley, CA 94720-1776, UsSA

tThese authors contributed e ually.

Case study: vision-based control with GPS

Learned Visuomotor Policy: Shape sorting cube

Break

Imitating optimal control with DAgger

Deep Learning for Real-Time Atari Game Play
Using Offline Monte-Carlo Tree Search Planning

Satinder Singh
Computer Science and Eng.
University of Michigan
baveja@umich.edu

Xiaoxiao Guo
Computer Science and Eng.
University of Michigan
guoxiaol@umich.edu

Honglak Lee Richard Lewis Xiaoshi Wang
Computer Science and Eng. Department of Psychology Computer Science and Eng.
University of Michigan University of Michigan University of Michigan

honglak@umich.edu rickl@umich.edu xiaoshiw@umich.edu

m(a|se)

51

m(a|se)

~ € B
+ 03 € ¥ >
CLEEEREREE -]

A problem with DAgger

1. train mp(us|oy) from human data D = {o1,uy,...,0n,un}

2.[1“un mo(us|o;) to get dataset D, = {o,... ,OMH
3. Ask bommpmtéo tabelb), ByithiHethotiony u;
4. Aggregate: D < DU D,

Imitating MPC: PLATO algorithm

1. train mp(us|os) from human data D = {o1,uy,...,0n,un}

2. run 7{(ajde) tooggttddabasttT),—{bay, . . , 0as}}
3. Ask computer to label D, with actions uy
4. Aggregate: D <+ DU D,

simple stochastic policy: 7(u;|x;) = N (Kix; + ki, By,)

T
t(ug|x;) = arg min Y Erle(xv,up)] + ADkr(7(ay]x¢) | o (us|oy))
t'=t

Kahn, Zhang, Levine, Abbeel ‘16

Imitating MPC: PLATO algorithm

train mg(u¢|o¢) from human data D = {o1,uy,...,0n,un}
run 7(u¢|o:) to get dataset D = {01,...,0n}

Ask computer to label D, with actions uy

. Aggregate: D < DUD,

NS

simple stochastic policy: 7(u;|x;) = N (Kix; + ki, By,)

T

#(w|x,) = argmin Y Ex[c(xy, up)] + ADkL(7(w|x;) || mo(ue]oy))
=t
) path replanned!
7(uslo

Imitating MPC: PLATO algorithm

train mg(u¢|o¢) from human data D = {o1,uy,...,0n,un}
run 7(u¢|o:) to get dataset D = {01,...,0n}

Ask computer to label D, with actions uy

. Aggregate: D < DUD,

NS

simple stochastic policy: 7(u;|x;) = N (Kix; + ki, By,)

T
t(ug|x;) = arg min Y Erle(xv,up)] + ADkr(7(ay]x¢) | o (us|oy))
t'=t

7T9(112|02)

——
\‘4") 4 7%(112:2“/_\

Imitating MPC: PLATO algorithm

train mp(us|os) from human data D = {o1,uy, ..
run 7(u¢|o:) to get dataset D = {01,...,0n}
Ask computer to label D, with actions uy

. Aggregate: D < DUD,

'70N7uN}

NS

simple stochastic policy: 7(u;|x;) = N (Kix; + ki, By,)

(ug|x¢) = arg mﬁi_nz Eile(xy,up)] + ADkL (7 (ug|x¢) || 7o (ug|o))

t'=t 7T9(112|02)

’

. \/\

u2|0

Imitating MPC: PLATO algorithm

train mg(u¢|o¢) from human data D = {o1,uy,...,0n,un}
run 7(u¢|o:) to get dataset D = {01,...,0n}

Ask computer to label D, with actions uy

. Aggregate: D < DUD,

NS

simple stochastic policy: 7r(u¢|x;) = N (Kixi + ke, 2y,
T
t(ug|x;) = arg min Y Erle(xv,up)] + ADkr(7(ay]x¢) | o (us|oy))
t'=t
_ 7(uz]oy)

’7T9(112|02)

Imitating MPC: PLATO algorithm

train mg(u¢|o¢) from human data D = {o1,uy,...,0n,un}
run 7(u¢|o:) to get dataset D = {01,...,0n}

Ask computer to label D, with actions uy

. Aggregate: D < DUD,

NS

simple stochastic policy: 7(u;|x;) = N (Kix; + ki, By,)

T
t(ug|x;) = arg min Y Erle(xv,up)] + ADkr(7(ay]x¢) | o (us|oy))
t'=t ’7T9(112|02)

—a
7T(112|02)

Imitating MPC: PLATO algorithm

1. train mp(us|os) from human data D = {o1,uy,...,0n,un}
2. run 7(u¢|oy) to get dataset Dy = {o1,...,0n}

3. Ask computer to label D, with actions uy

4. Aggregate: D < DU D,

simple stochastic policy: 7(u;|x;) = N (Kix; + ki, By,)

T
(ug|x;) = argmin Y Exle(xe, up)] + ADk (7 (ui(xy) 70 (uifor))

t=t
replanning = Model Predictive Control (MPC)

mo(ug|o) — control from images @ @ @ @

7(us|x¢) — control from states
X ©

Imitating MPC: PLATO algorithm

train mg(u¢|o¢) from human data D = {o1,uy,...,0n,un}
run 7(u¢|o:) to get dataset D = {01,...,0n}

Ask computer to label D, with actions uy

. Aggregate: D <+ DUD,

NS

simple stochastic policy: 7r(u¢|x;) = N (Kixi + ke, 2y,
T
t(ug|x;) = arg min Y Erle(xv,up)] + ADkr(7(ay]x¢) | o (us|oy))

t'=t

057 — unknown!

T(ulo) X3
'4‘ ' 5 <§ x2 X4
X1 7T9(111|01)

p(X¢11|xs, 1) — known
p(0¢|x¢) — unknown

Imitating MPC: PLATO algorithm

train mg(u¢|o¢) from human data D = {o1,uy,...,0n,un}
run 7(u¢|o:) to get dataset D = {01,...,0n}

Ask computer to label D, with actions uy

. Aggregate: D <+ DUD,

NS

simple stochastic policy: 7r(u¢|x;) = N (Kixi + ke, 2y,
T
t(ug|x;) = arg min Y Erle(xv,up)] + ADkr(7(ay]x¢) | o (us|oy))

Imitating MPC: PLATO algorithm

7(ug|x;) = arg mm Z Eile(xe,up)] + ADkL (7r(ug|x¢) || o (g |0y))

/g @

J avoids high cost!

MP

input substitution trick
need state at training time
but not at test time!

O O
Learning

Imitating I\/IPC' PLATO algorithm
//

e—

Objective: fly through forest at 2m/s
Main sensor: 1d laser

DAgger vs GPS

* DAgger does not require an adaptive expert
* Any expert will do, so long as states from learned policy can be labeled

* Assumes it is possible to match expert’s behavior up to bounded loss
* Not always possible (e.g. partially observed domains)

* GPS adapts the “expert” behavior
* Does not require bounded loss on initial expert (expert will change)

Why imitate optimal control?

* Relatively stable and easy to use
» Supervised learning works very well
e Optimal control (usually) works very well
 The combination of the two (usually) works very well

* Input remapping trick: can exploit availability of additional information at
training time to learn policy from raw observations

e Overcomes optimization challenges of backpropagating into policy
directly

* Usually sample-efficient and viable for real physical systems

Model-based RL algorithms summary

7~
 Learn model and plan (without policy) '9/&@/
* |teratively collect more data to overcome distribution mismatch ((@€
e Replan every time step (MPC) to mitigate small model errors O/V/S'M/
</

* Learn policy
* Backpropagate into policy (e.g., PILCO) — simple but potentially unstable
* Imitate optimal control in a constrained optimization framework (e.g., GPS)
* Imitate optimal control via DAgger-like process (e.g., PLATO)

Limitations of model-based RL

* Need some kind of model
* Not always available
* Sometimes harder to learn than the policy

* Learning the model takes time & data
* Sometimes expressive model classes (neural nets) are not fast
* Sometimes fast model classes (linear models) are not expressive

* Some kind of additional assumptions
* Linearizability/continuity
* Ability to reset the system (for local linear models)
* Smoothness (for GP-style global models)
* Etc.

gradient-free methods
(e.g. NES, CMA, etc.)

ﬁ

fully online methods
(e.g. A3C)

ﬁ

policy gradient methods
(e.g. TRPO)

ﬁ

replay buffer value estimation methods
(Q-learning, DDPG, NAF, etc.)

ﬁ

model-based deep RL
(e.g. guided policy search)

ﬁ

model-based “shallow” RL
(e.g. PILCO)

Evolution Strategies as a
Scalable Alternative to Reinforcement Learning

d (27-DoF /21-dim. Actions) Reacher3 (3-DoF /3-dim. Actions) Cheetah (9-DoF /6-dim. Actions])

Tim Salimans' Jonathan Ho' Xi Chen' Ilya Sutskever'

half-cheetah (slightly different version)

Learnin g performance Episode Total Reward ¥ Episode *

Wang et al. ‘17

4000

100,000,000 steps
(100,000 episodes)
(~ 15 days real time)

2k 4k 6k 8k]

TﬁPO+GAE (Schulman et al. “16) M \ zf(’)ooo(?(’)oeos;(:(e:lzz)

half-cheetah (~ 1.5 days real time)

1,000,000 steps
(1,000 episodes)
(~ 3 hours real time)

0 1000 2000 3000 4000 5000 6000

Episodes
/ 0.35
Guetal. ‘16 —
0.30 — TRPO
-- MDGPS
0.25 PIGPS
— PILQR-MDGPS

0.20

about 20 minutes of

0.10 -

Avg final distance

| cart-pole cart-double-pole unicycle

experience on a real

state space R2 R® RZ 0.05} ¢

trials <10 20-30 =~ 20

experience ~ 20s =~ 60s-90s ~ 20s-30s 0.0 1 OX ga p rO b Ot
parameter space R305 R!816 R2® ~0.05 . .

10° 10! 10? 10° 10 10°
samples

Chebotar et al. "17 (note log scale)

Which RL algorithm to use?

are you learning
in a simulator?

is simulation cost
negligible compared
to training cost?

how patient
are you?

value-based | Policy gradient &
model-based .
RL (GPS, etc.) methods (e.g. actor-critic
S Q-learning) . — | (TRPO, PPO, A3(C)

BUT: if you have a teration 0
simulator, you can
compute gradients
through it — do you need
model-free RL?

Various Experiments
Including the policy input

