(CS294-112 Deep Reinforcement Learning HW2:
Policy Gradients
due September 20th, 11:59 pm

1 Introduction

The goal of this assignment is to experiment with policy gradient and its variants, including
variance reduction methods. Your goals will be to set up policy gradient for both continuous
and discrete environments, and implement a neural network baseline for variance reduction.
You can clone the assignment at https://github.com/berkeleydeeprlcourse/
homework

Turn in your report and code for the full homework as described in Section 7 by September
20th.

2 Code Setup

The only file you need to modify in this homework is t rain_pg.py. The files 1ogz.py and
plots.py are utility files; while you should look at them to understand their functionality,
you will not modify them.

The function train_PG is used to perform the actual training for policy gradient. The
parameters passed into this function specify the algorithm’s hyperparameters and environ-
ment.

After you fill in the blanks, you should be able to just run python train_pg.py with
some command line options to perform the experiments. To visualize the results, you can
run python plot.py path/to/logdir. (Full documentation for the plotter can be
found in plot.py.)


https://github.com/berkeleydeeprlcourse/homework
https://github.com/berkeleydeeprlcourse/homework

3 Building Networks

Implement the utility function, build_mlp, which will build a feedforward neural network
with fully connected units. Test it to make sure that it produces outputs of the expected
size and shape. You do not need to include anything in your write-up about this,
it will just make your life easier.

4 Implement Policy Gradient

The train_PG.py file contains an incomplete implementation of policy gradient, and you
will finish the implementation. The file has detailed instructions on which pieces you will
write for this section.

4.1 Background
4.1.1 Reward to Go

Recall that the policy gradient g can be expressed as the expectation of a few different
expressions. These result in different ways of forming the sample estimate for g. Here, you
will implement two ways, controlled by a flag in the code called reward-to—-go.

1. Way one: trajectory-centric policy gradients, for which reward-to-go=False. Here,
we compute

go = E [Vglog P(r|mg)R(T)]

TNﬂ'g

] Zve log P(7|m9)R(T)

(Z Vg log We(@t|5t>> R(7),

= D] 5
T€ED
where 7 = (s, ag, s1, -..) 18 a trajectory, D is a datset of trajectories collected on policy
T, 0 is the set of parameters for the policy, and R(7) = ZtT:o ~'r; is the discounted
sum of rewards along a trajectory.

22

2. Way two: state/action-centric policy gradients, for which reward-to-go=True.



Here, we compute

T
g = E Z7tvglog7r(at|st)Q”(st,at)
t—0

T~TY

T T
ﬁ Z Z 7'V log m(as|s;) Z ’yt,’tm/.

T€D t=0 t'=t

Q

The flag reward-to—go refers to the fact that in this case, we push up the probability
of picking action a, in state s; in proportion to the ‘reward-to-go’ from that state-action
pair—the sum of rewards achieved by starting in s;, taking action a;, and then acting
according to the current policy forever after.

4.1.2 Advantage Normalization

A trick which is known to usually boost empirical performance by lowering variance of the
estimator is to center advantages and normalize them to have mean of 0 and a standard
deviation of 1.

From a theoretical perspective, this does two things:

e Makes use of a constant baseline at all timesteps for all trajectories, which does not
change the policy gradient in expectation.

e Rescales the learning rate by a factor of 1/0, where o is the standard dev of the
empirical advantages.

4.2 Instructions

After you have completed the code, you will run experiments to get a feel for how different
settings impact the performance of policy gradient methods, and report on your results.

1. Run the PG algorithm in the discrete CartPole-v0 environment from the command
line as follows:

python train_pg.py CartPole-v0O -n 100 -b 1000 -e 5 -dna —-—-exp_name
sb_no_rtg_dna

python train_pg.py CartPole-v0 -n 100 -b 1000 -e 5 -rtg -dna —--exp_name
sb_rtg_dna

python train_pg.py CartPole-v0 -n 100 -b 1000 -e 5 -rtg —-—-exp_name
sb_rtg_na

python train_pg.py CartPole-v0 -n 100 -b 5000 -e 5 —-dna —-—-exp_name
1b_no_rtg_dna

python train_pg.py CartPole-v0O -n 100 -b 5000 -e 5 -rtg -dna —--exp_name
1b_rtg_dna



python train_pg.py CartPole-vO0 -n 100 -b 5000 -e 5 -rtg ——exp_name

1lb_rtg_na

What’s happening there:

—n : Number of iterations.

—b : Batch size (number of state-action pairs sampled while acting according to
the current policy at each iteration).

—e : Number of experiments to run with the same configuration. Each experiment
will start with a different randomly initialized policy, and have a different stream
of random numbers.

—dna : Flag: if present, sets normalize_advantages to False. Otherwise, by
default, normalize_advantages=True.

-rtg : Flag: if present, sets reward_to_go=True. Otherwise, by default,
reward_to_go=False.

——exp_name : Name for experiment, which goes into the name for the data
directory.

Various other command line arguments will allow you to set batch size, learning rate,
network architecture (number of hidden layers and the size of the hidden layers—for
CartPole, you can use one hidden layer with 32 units), and more.

Deliverables for report:

Graph the results of your experiments using the plot.py file we provide.
Create two graphs.

— In the first graph, compare the learning curves (average return at each itera-
tion) for the experiments prefixed with sb_. (The small batch experiments.)

— In the second graph, compare the learning curves for the experiments prefixed
with 1b_. (The large batch experiments.)

Answer the following questions briefly:

— Which gradient estimator has better performance without advantage-centering—

the trajectory-centric one, or the one using reward-to-go?
— Did advantage centering help?

— Describe what you expected from the math—do the empirical results match
the theory?

— Did the batch size make an impact?



e Provide the exact command line configurations you used to run your experiments.
(To verify batch size, learning rate, architecture, and so on.)

What to Expect:
e CartPole converges to a maximum score of 200.

2. Run experiments in the InvertedPendulum—-v1 continuous control environment and
find hyperparameter settings (network architecture, learning rate, batch size, reward-
to-go, advantage centering, etc.) that allow you to solve the task. Try to find the
smallest possible batch size that succeeds.

Note: Which gradient estimator should you use, based on your experiments in the
previous section?

Deliverables:

e Provide a learning curve where the policy gets to optimum (maximum score of
1000) in less than 100 iterations. (This may be for a single random seed, or
averaged over multiple.) (Also, your policy performance may fluctuate around
1000—this is fine.)

e Provide the exact command line configurations you used to run your experiments.
If you made any extreme choices (unusually high learning rate, weirdly deep
network), justify them briefly.

5 Implement Neural Network Baselines

In this section, you will implement a state-dependent neural network baseline function. The
train_PG.py file has instructions for what parts of the code you need to modify.

After you have completed the code, run the following experiments. Make sure to run over
multiple random seeds:

1. For the inverted pendulum task, compare the learning curve with both the neural
network baseline function and advantage normalization to the learning curve without
the neural network baseline but with advantage normalization.

6 HalfCheetah

For this section, you will use your policy gradient implementation to solve a much more
challenging task: HalfCheetah-v1l. From the command line, run:

python train_pg.py HalfCheetah-vl -ep 150 —--discount 0.9 (other settings)



where (other settings) is replaced with any settings of your choosing. The —ep 150 setting
makes the episode length 150, which is shorter than the default of 1000 for HalfCheetah and
speeds up your training significantly.

1. Find any settings which result in the agent attaining an average score of 150 or more
at the end of 100 iterations, and provide a learning curve.

This may take a while (~20-30 minutes) to train.

7 Bonus

Choose any (or all) of the following:

e A serious bottleneck in the learning, for more complex environments, is the sample
collection time. In train_PG.py, we only collect trajectories in a single thread, but
this process can be fully parallelized across threads to get a useful speedup. Implement
the parallelization and report on the difference in training time.

e Implement GAE-) for advantage estimation[] Run experiments in a MuJoCo gym
environment to explore whether this speeds up training. (Walker2d-vl may be
good for this.)

e In PG, we collect a batch of data, estimate a single gradient, and then discard the data
and move on. Can we potentially accelerate PG by taking multiple gradient descent
steps with the same batch of data? Explore this option and report on your results.
Set up a fair comparison between single-step PG and multi-step PG on at least one
MuJoCo gym environment.

8 Submission

Your report should be a document containing 1) all graphs requested in sections 4, 5, and
6, and 2) the answers to all short ‘explanation’ questions in sections 4, and 3) all command
line expressions you used to run your experiments.

You should also turn in your modified train_pg.py file. If your code includes additional
files, provide a zip file including your train_pg.py and all other files needed to run your
code, along with any special instructions needed to exactly duplicate your results.

Turn this in by September 20th 11:59pm by emailing your report and code to
berkeleydeeprlcourse@gmail.com, with subject line “Deep RL Assignment 2”.

"https://arxiv.org/abs/1506.02438


https://arxiv.org/abs/1506.02438

	Introduction
	Code Setup
	Building Networks
	Implement Policy Gradient
	Background
	Reward to Go
	Advantage Normalization

	Instructions

	Implement Neural Network Baselines
	HalfCheetah
	Bonus
	Submission

