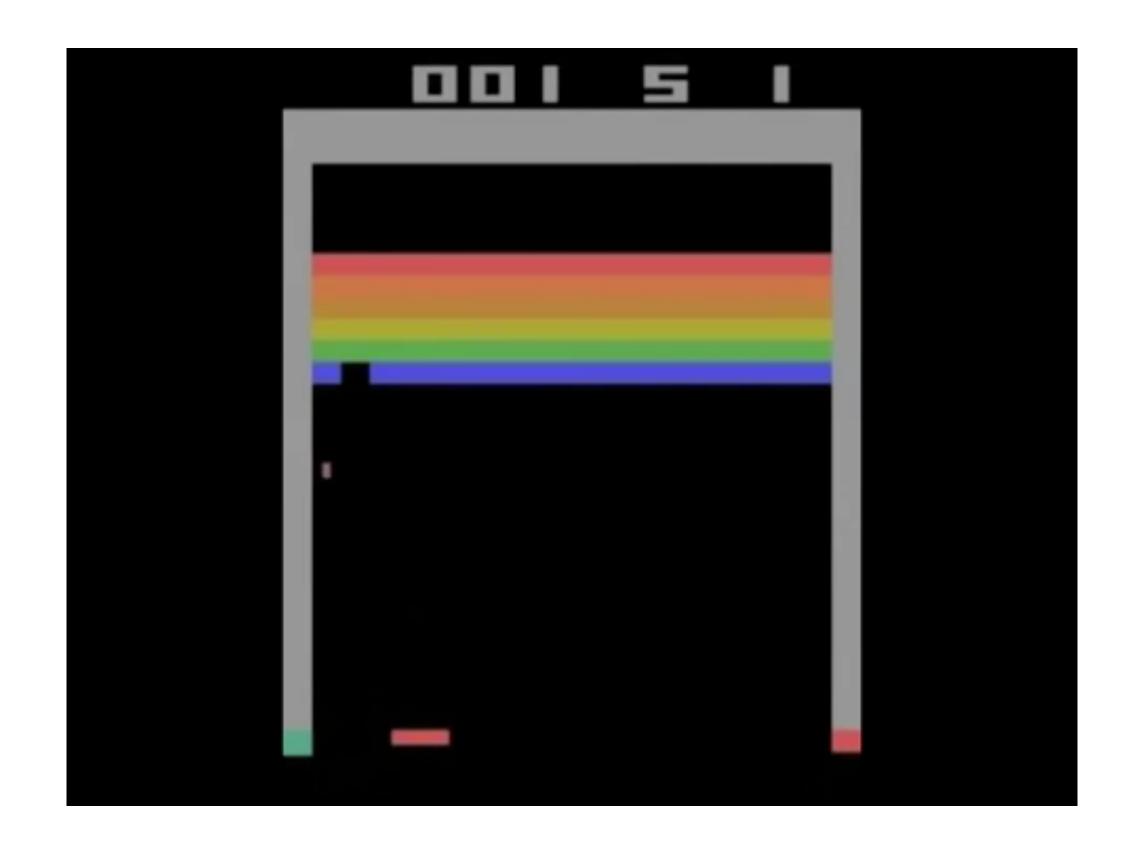
Advanced Model Learning

October 2, 2017

Chelsea Finn

Previously: DQN with images



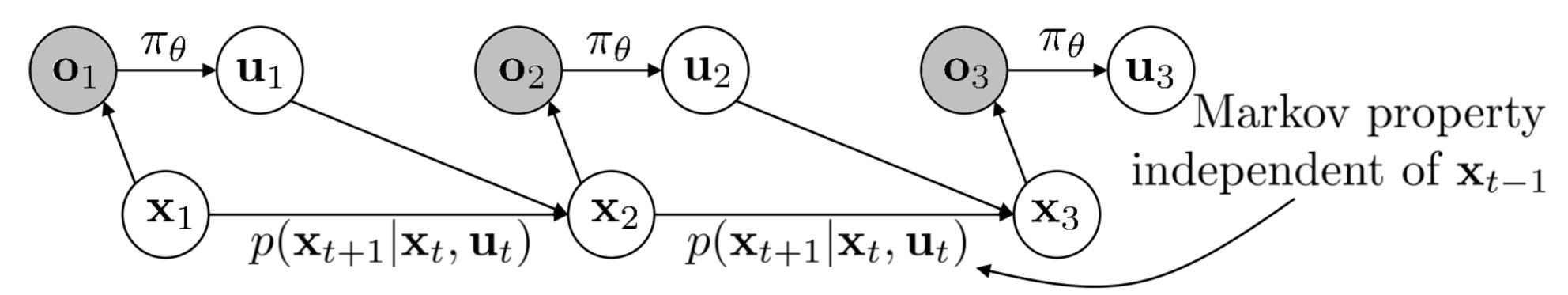
This lecture: Can we use model-based methods with images?

Recap: Model-based RL

model-based reinforcement learning version 1.0:

- 1. run base policy $\pi_0(\mathbf{u}_t|\mathbf{x}_t)$ (e.g., random policy) to collect $\mathcal{D} = \{(\mathbf{x}, \mathbf{u}, \mathbf{x}')_i\}$
- 2. learn dynamics model $f(\mathbf{x}, \mathbf{u})$ to minimize $\sum_i ||f(\mathbf{x}_i, \mathbf{u}_i) \mathbf{x}_i'||^2$
- 3. backpropagate through $f(\mathbf{x}, \mathbf{u})$ to choose actions (e.g. using iLQR)
- 4. execute those actions and add the resulting data $\{(\mathbf{x}, \mathbf{u}, \mathbf{x}')_j\}$ to \mathcal{D}

What about POMDPs?



Outline

- 1. Models in latent space
- 2. Models directly in image space
- 3. Inverse models
- 4. Predict alternative quantities

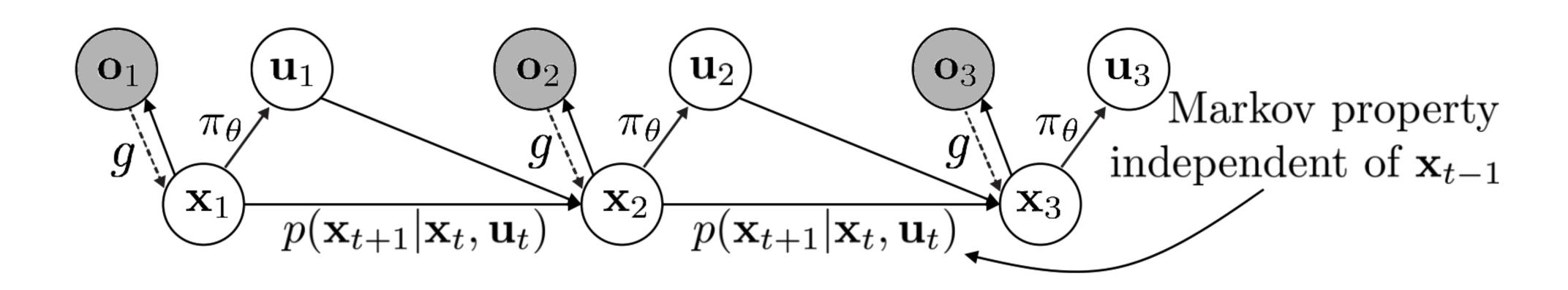
Note: This is an active area of research.

Outline

- 1. Models in latent space
- 2. Models directly in image space
- 3. Inverse models
- 4. Predict alternative quantities

Learning in Latent Space

Key idea: learn embedding $g(\mathbf{o}_t)$, then learn in latent space (model-based or model-free)



What do we want g to be?

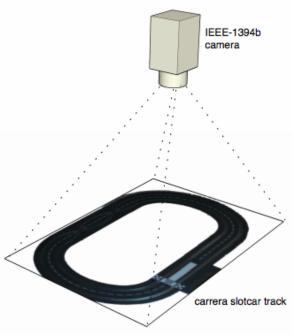
It depends on the method — we'll see.

Learning in Latent Space

Key idea: learn embedding $g(\mathbf{o}_t) = \mathbf{x}_t$, then learn in latent space (model-based or **model-free**)

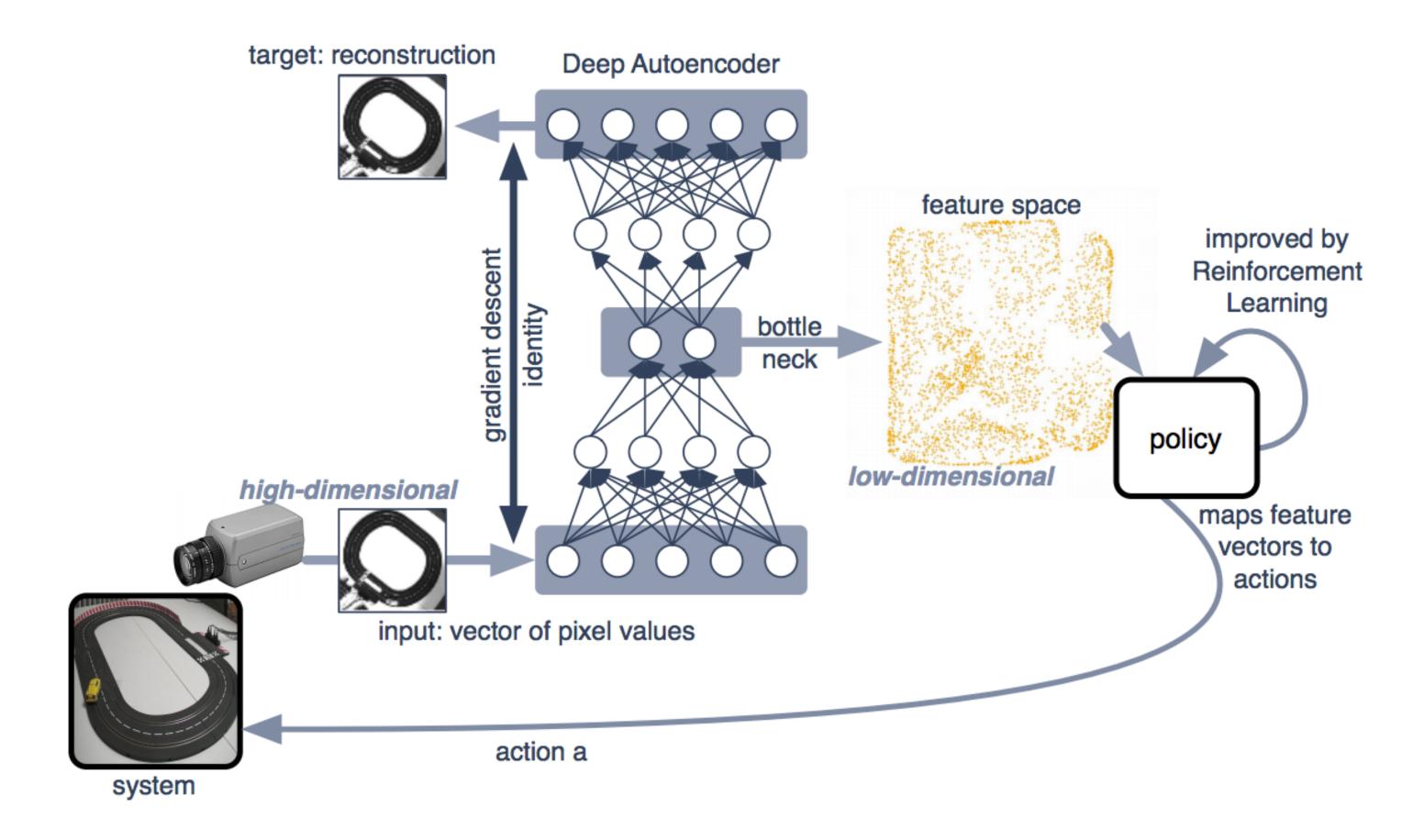
Autonomous reinforcement learning on raw visual input data in a real world application

Sascha Lange, Martin Riedmiller Department of Computer Science Albert-Ludwigs-Universität Freiburg Arne Voigtländer Shoogee GmbH & Co. KG Krögerweg 16a



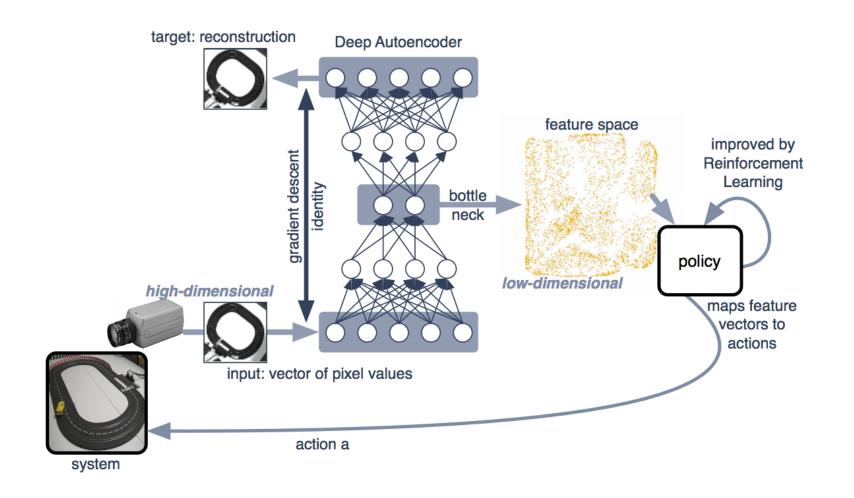
controlling a slot-car

- 1. collect data with exploratory policy
- 2. learn low-dimensional embedding of image (how?)
- 3. run q-learning with function approximation with embedding



embedding is low-dimensional and summarizes the image

- 1. collect data with exploratory policy
- 2. learn low-dimensional embedding of image (how?)
- 3. run q-learning with function approximation with embedding



Pros:

+ Learn visual skill very efficiently

Cons:

- Autoencoder might not recover the right representation
- Not necessarily suitable for model-based methods

Learning in Latent Space

Key idea: learn embedding $g(\mathbf{o}_t) = \mathbf{x}_t$, then learn in latent space

(model-based or model-free)

Deep Spatial Autoencoders for Visuomotor Learning

Chelsea Finn, Xin Yu Tan, Yan Duan, Trevor Darrell, Sergey Levine, Pieter Abbeel

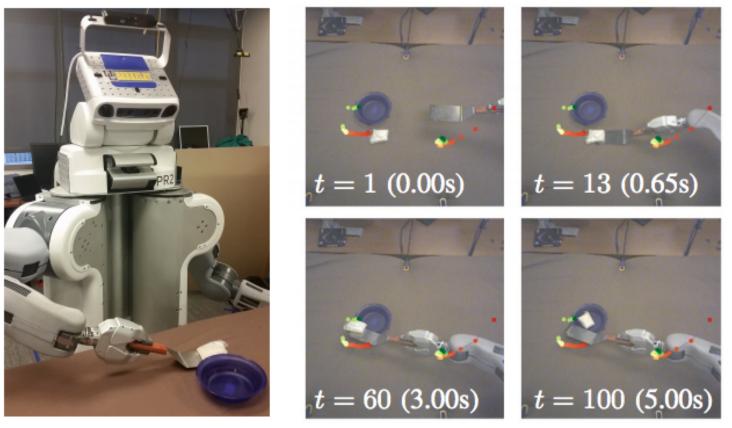
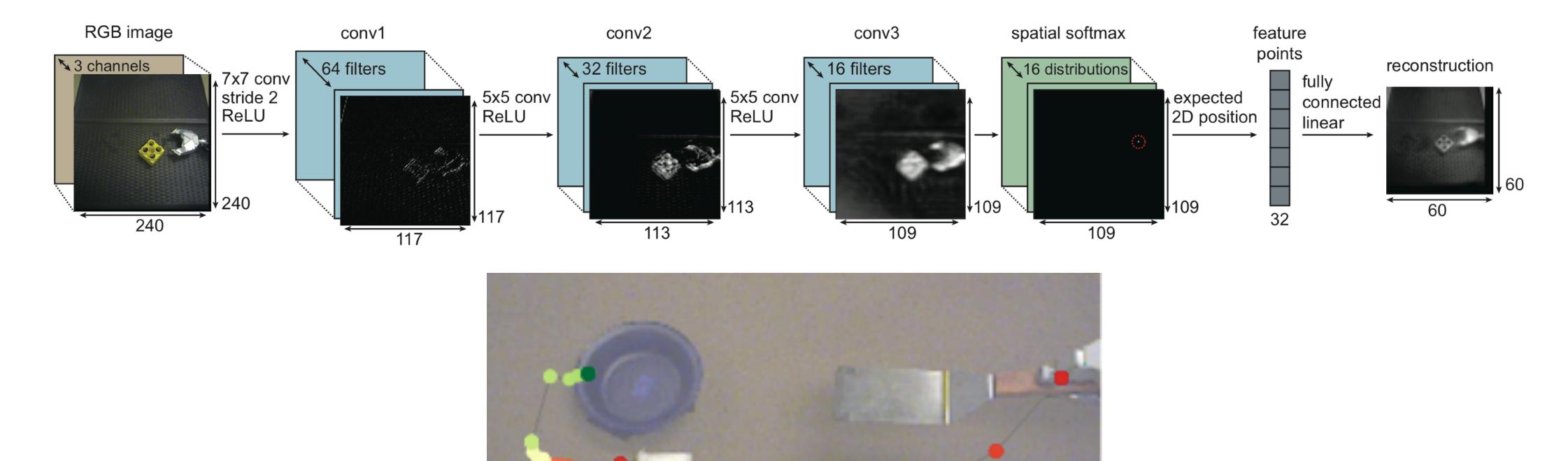


Fig. 1: PR2 learning to scoop a bag of rice into a bowl with a spatula (left) using a learned visual state representation (right).

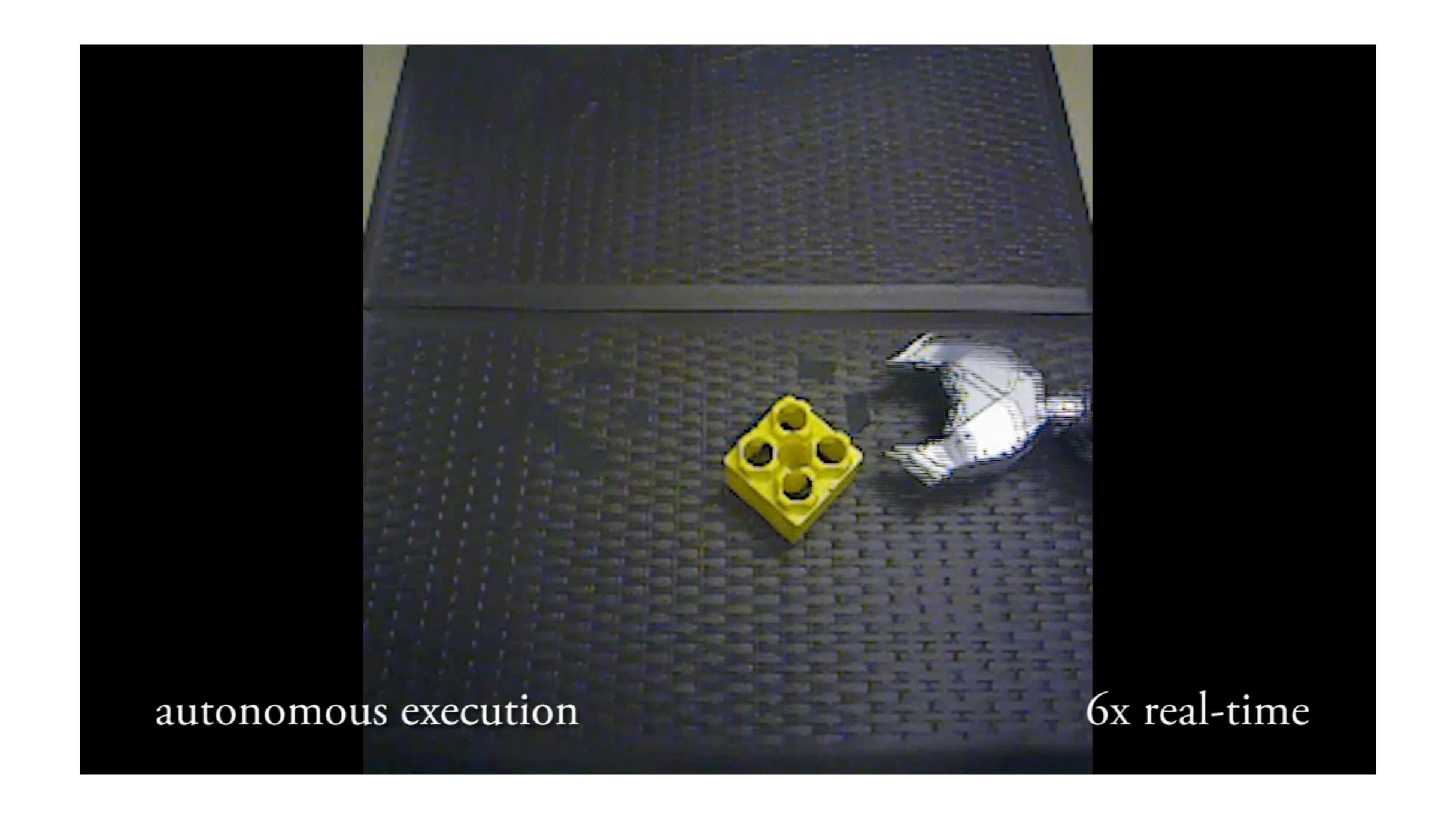
- 1. collect data with exploratory policy
- 2. learn smooth, structured embedding of image
- 3. learn local-linear model with embedding
- 4. run iLQG to learn to reach image of goal & goal gripper pose

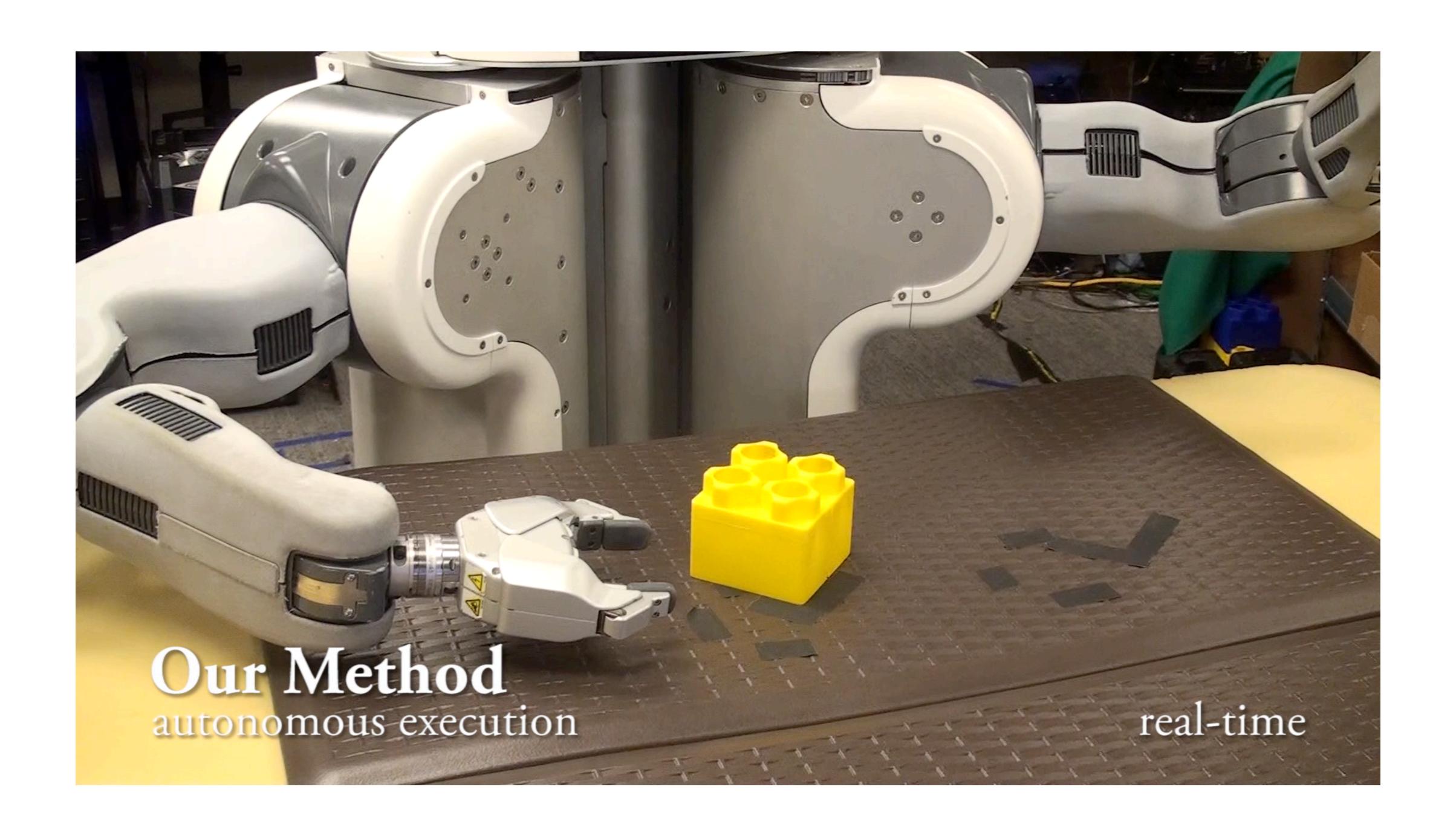


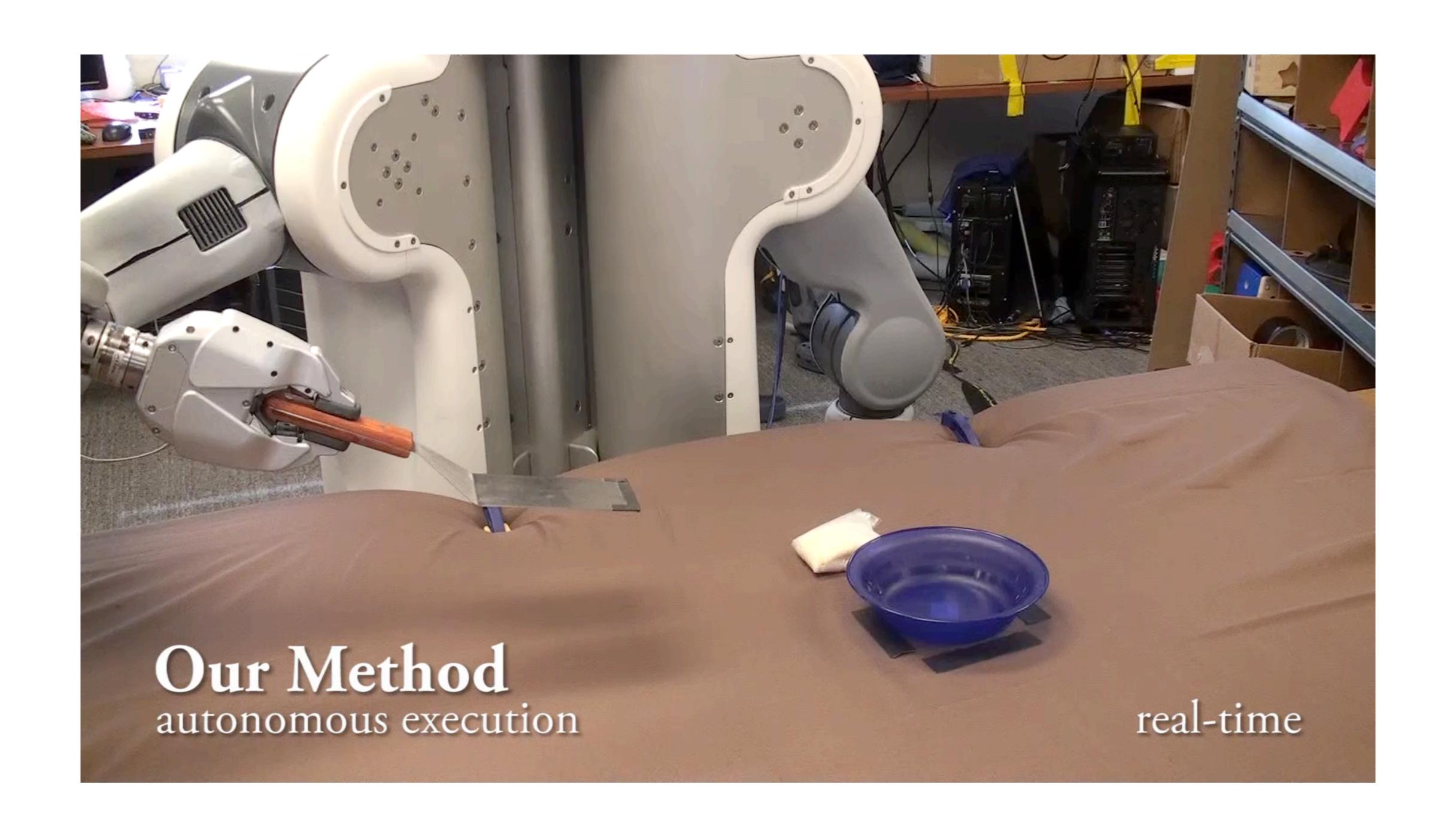
embedding is smooth and structured

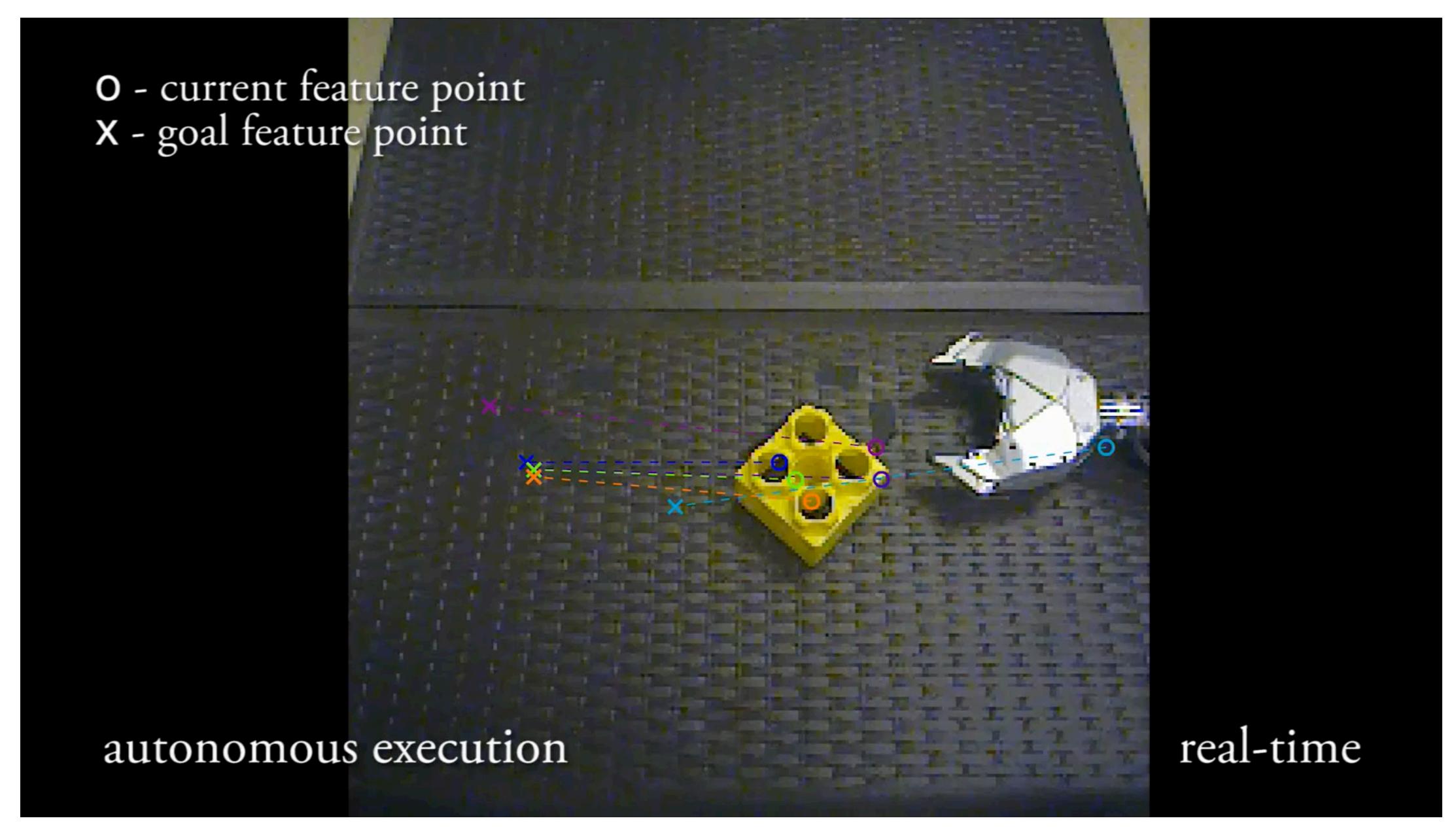
- 1. collect data with exploratory policy
- 2. learn smooth, structured embedding of image
- 3. learn local-linear model with embedding
- 4. run iLQG to learn to reach image of goal & goal gripper pose

Because we aren't using states, we need a reward.



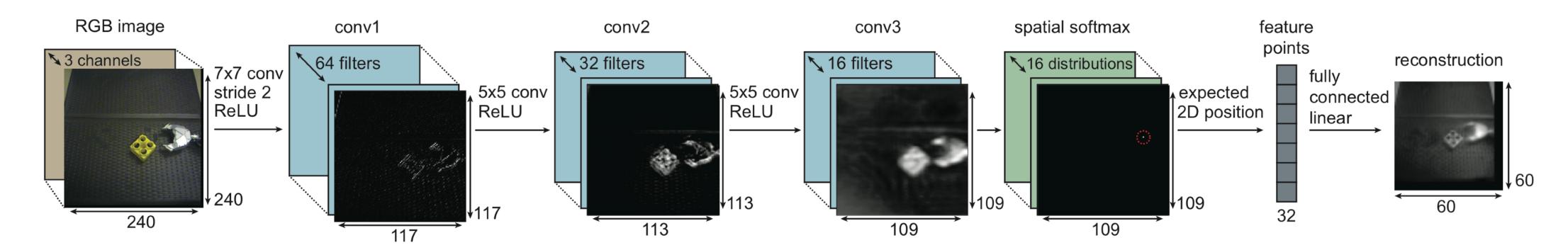






125 trials = 11 min of robot time (per task)

- 1. collect data with exploratory policy
- 2. learn smooth, structured embedding of image
- 3. learn local-linear model with embedding
- 4. run iLQG to learn to reach image of goal & goal gripper pose



Pros:

- + Learn complex visual skill very efficiently
- + Structured representation enables effective learning

Cons:

- Autoencoder might not recover the right representation

Learning in Latent Space

Key idea: learn embedding $g(\mathbf{o}_t) = \mathbf{x}_t$, then learn in latent space

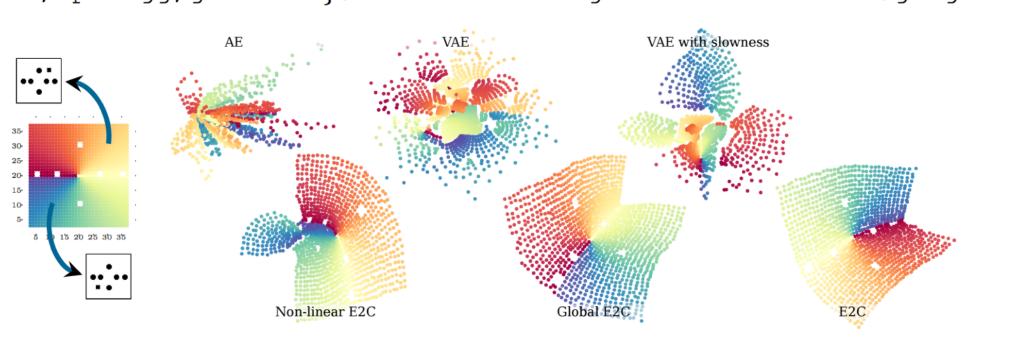
(model-based or model-free)

Embed to Control: A Locally Linear Latent Dynamics Model for Control from Raw Images

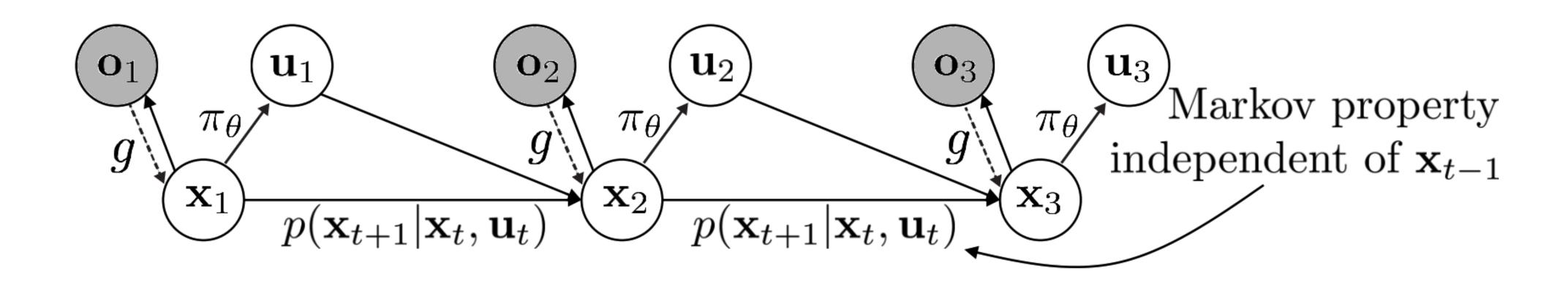
Manuel Watter* Jost Tobias Springenberg* Joschka Boedecker

University of Freiburg, Germany {watterm, springj, jboedeck}@cs.uni-freiburg.de

Martin Riedmiller
Google DeepMind
London, UK
riedmiller@google.com



- 1. collect data
- 2. learn embedding of image & dynamics model (jointly)
- 3. run iLQG to learn to reach image of goal



embedding that can be modeled

Thought exercise:

Why reconstruct the image?

Why not just learn embedding and model on embedding?

Outline

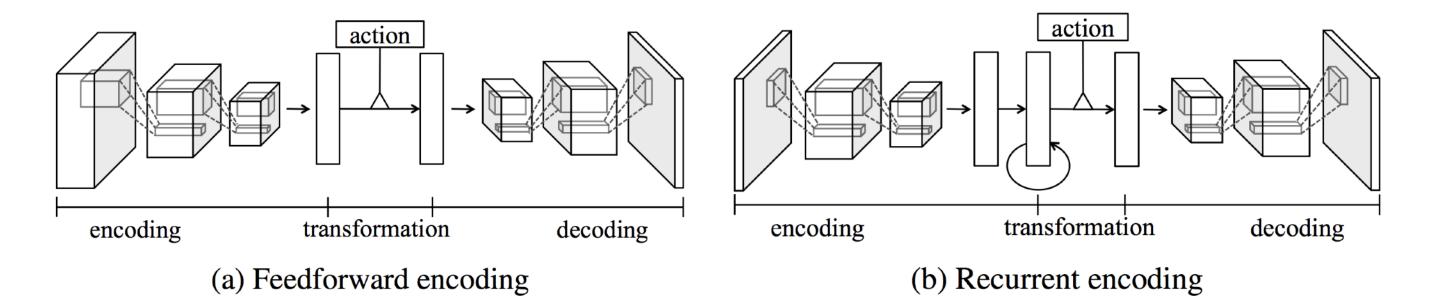
- 1. Models in latent space
- 2. Models directly in image space
- 3. Inverse models
- 4. Predict alternative quantities

Models with Images

Action-conditioned video prediction $f(\mathbf{o}_t, \mathbf{u}_t) = \mathbf{o}_{t+1}$

Action-Conditional Video Prediction using Deep Networks in Atari Games

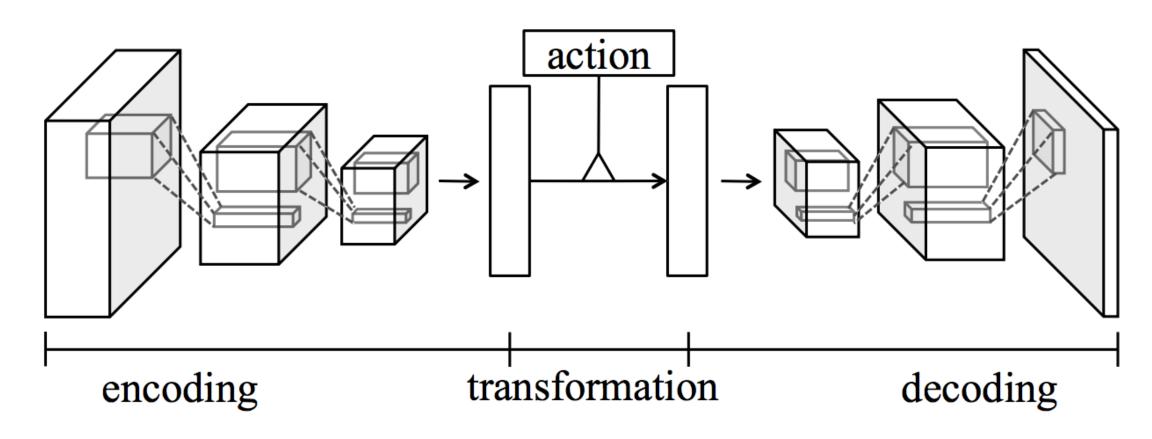
Junhyuk Oh Xiaoxiao Guo Honglak Lee Richard Lewis Satinder Singh University of Michigan, Ann Arbor, MI 48109, USA



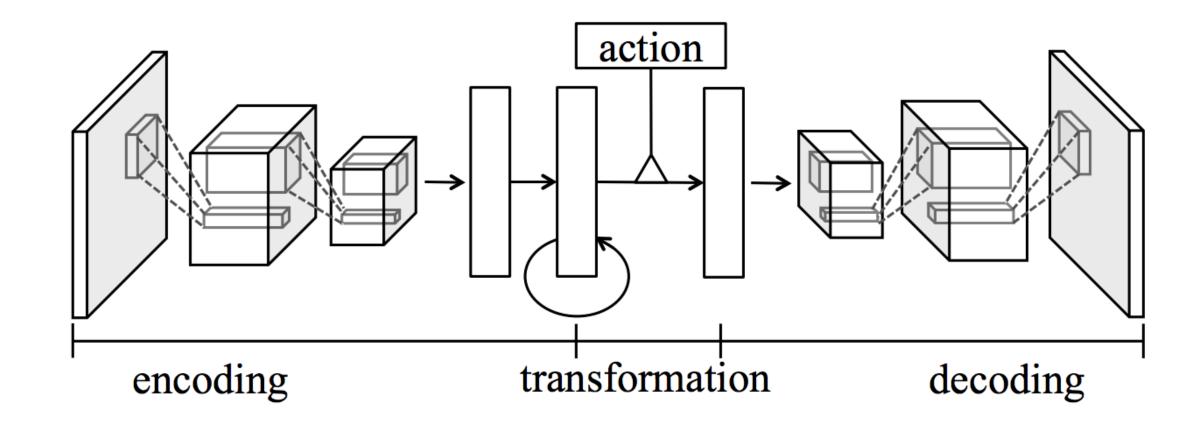
Models with Images

Action-conditioned video prediction $f(\mathbf{o}_t, \mathbf{u}_t) = \mathbf{o}_{t+1}$

$$f(\mathbf{o}_t, \mathbf{u}_t) = \mathbf{o}_{t+1}$$



(a) Feedforward encoding



(b) Recurrent encoding

Key components:

multi-step prediction $f(\mathbf{o}_t, \mathbf{u}_{t:T-1}) = \mathbf{o}_{t+1:T}$ curriculum learning and/or scheduled sampling

Does it work?

Yes!

can make 100-step predictions

Does it work?

Maybe not.

fails to model a critical part of the game

Does it work?

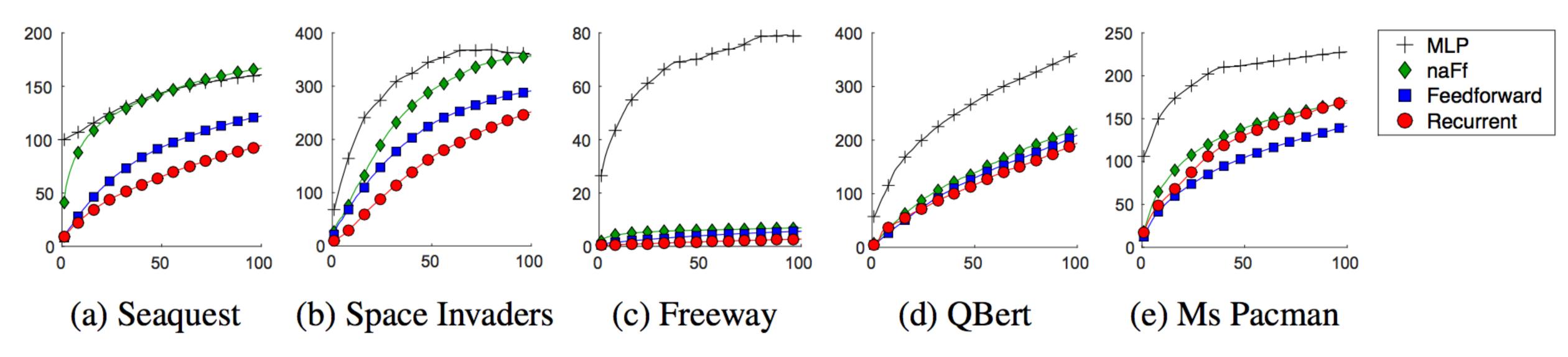


Figure 3: Mean squared error over 100-step predictions

Is it useful?

Using model for informed exploration

Using model for informed exploration:

- 1. Store most recent d frames
- 2. For every valid action, predict 1 frame ahead
- 3. Take action corresponding to future frame least like the previous d frames

Use Gaussian kernel similarity metric on images:

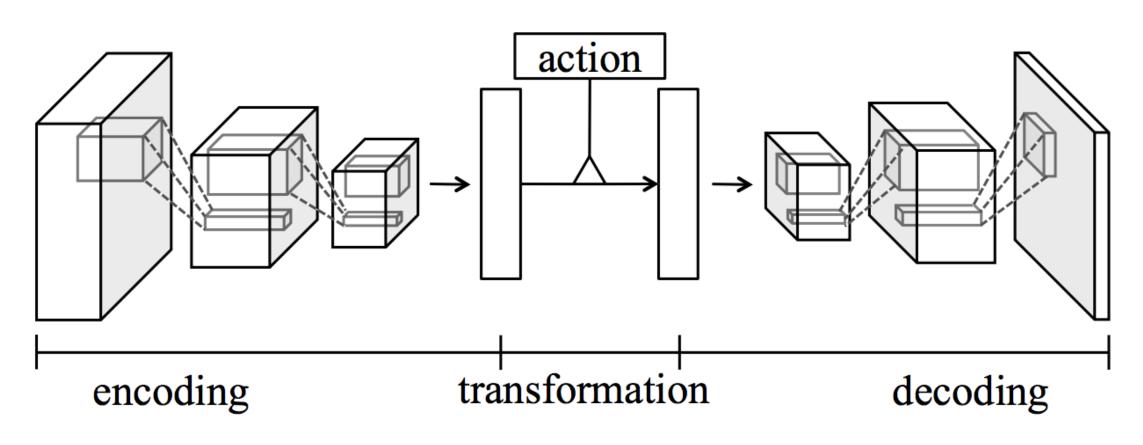
$$n_D(\mathbf{x}^{(a)}) = \sum_{i=1}^d k(\mathbf{x}^{(a)}, \mathbf{x}^{(i)}); \quad k(\mathbf{x}, \mathbf{y}) = \exp(-\sum_j \min(\max((x_j - y_j)^2 - \delta, 0), 1)/\sigma)$$

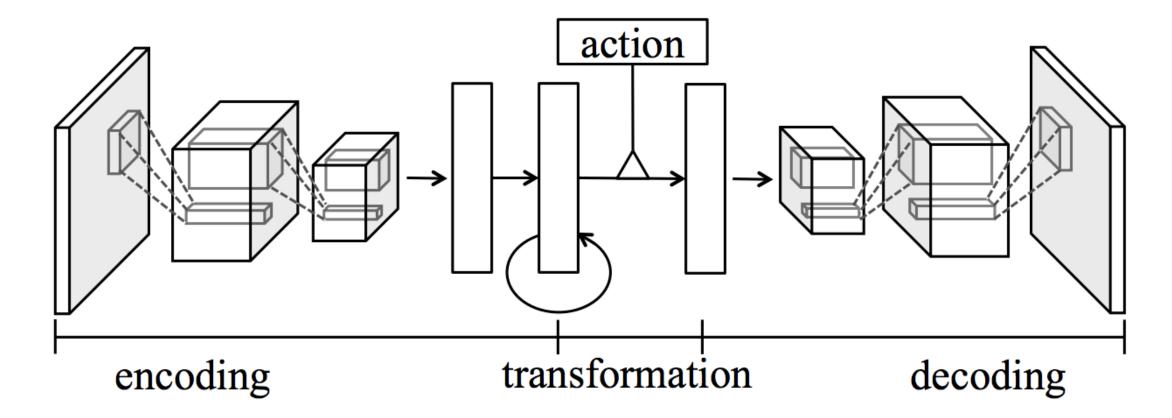
*caveat: prediction model was trained with data from DQN agent

more on exploration later in this course!

Action-conditioned video prediction $f(\mathbf{o}_t, \mathbf{u}_t) = \mathbf{o}_{t+1}$

$$f(\mathbf{o}_t, \mathbf{u}_t) = \mathbf{o}_{t+1}$$





(a) Feedforward encoding

(b) Recurrent encoding

Pros:

- + Stability through multi-step prediction
- + Useful for control

Cons:

- Synthetic images are easier to generate
- Not immediately clear how to plan with it

What about real images?

Unsupervised Learning for Physical Interaction through Video Prediction

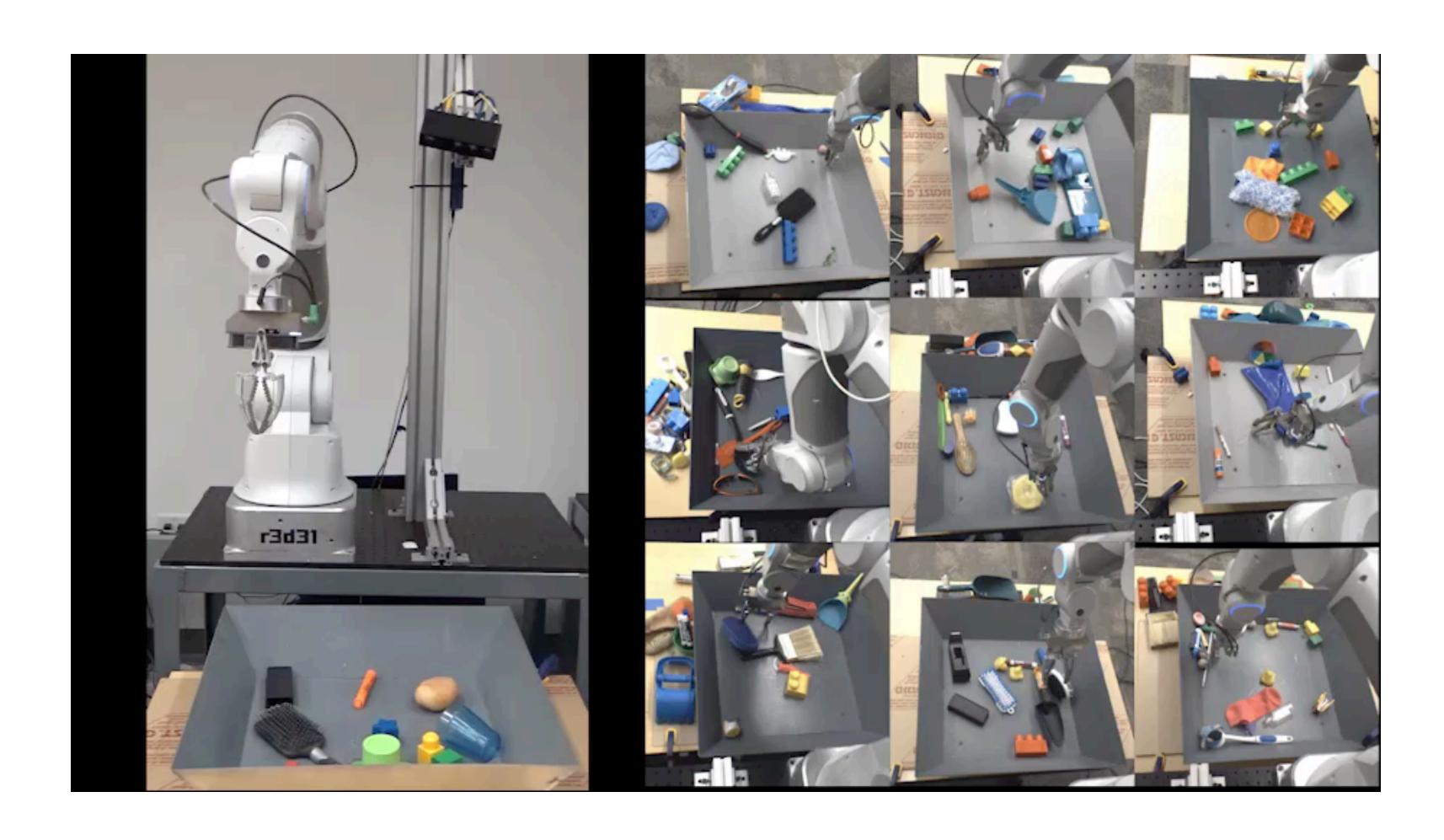
Chelsea Finn* UC Berkeley Ian Goodfellow OpenAI

Sergey Levine Google Brain

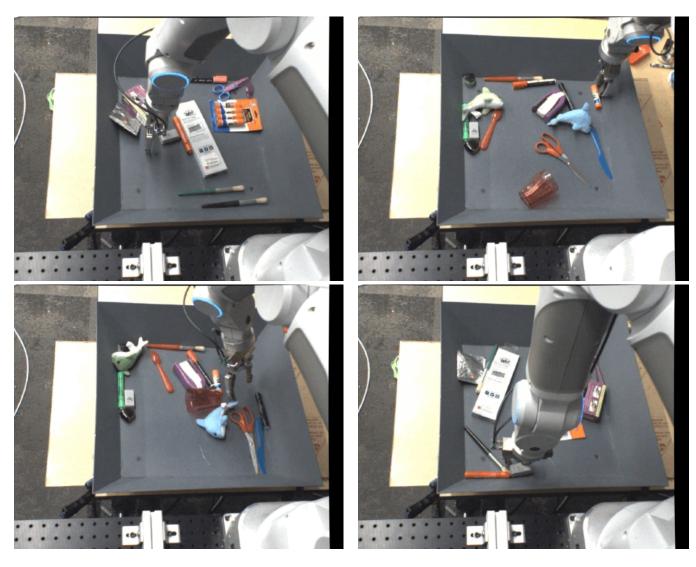
Deep Visual Foresight for Planning Robot Motion

Chelsea Finn^{1,2} and Sergey Levine^{1,2}

Data collection - 50k sequences (1M+ frames)



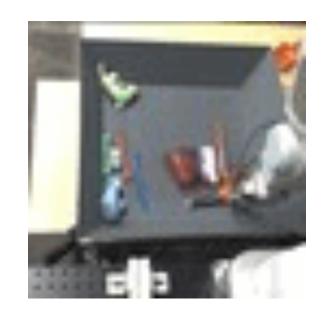
test set with novel objects

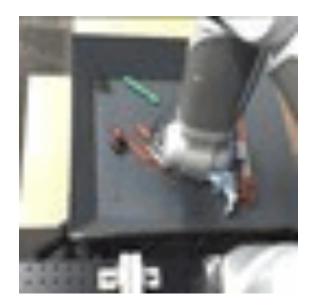


data publicly available for download sites.google.com/site/brainrobotdata

Train 8-step predictive model

Atari recurrent model



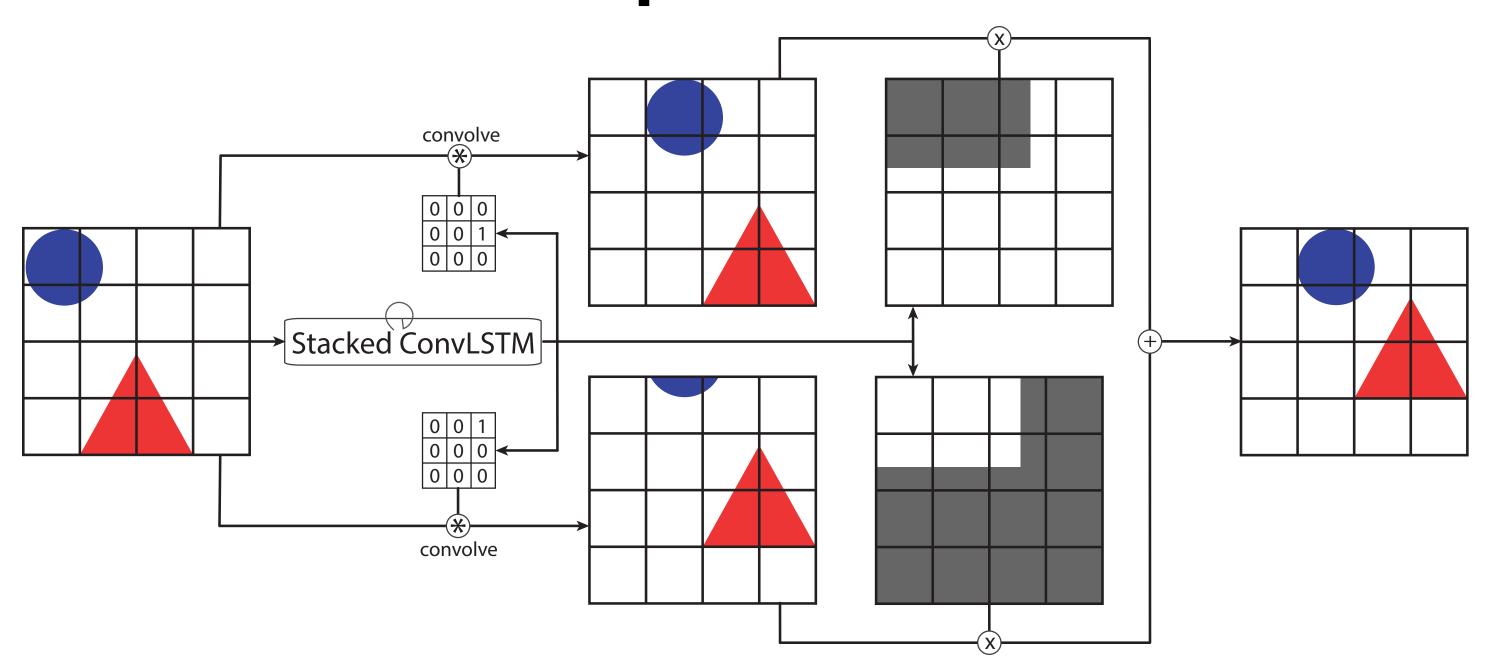


evaluate on held-out objects

— > doesn't have capacity to represent real images.

Train predictive model

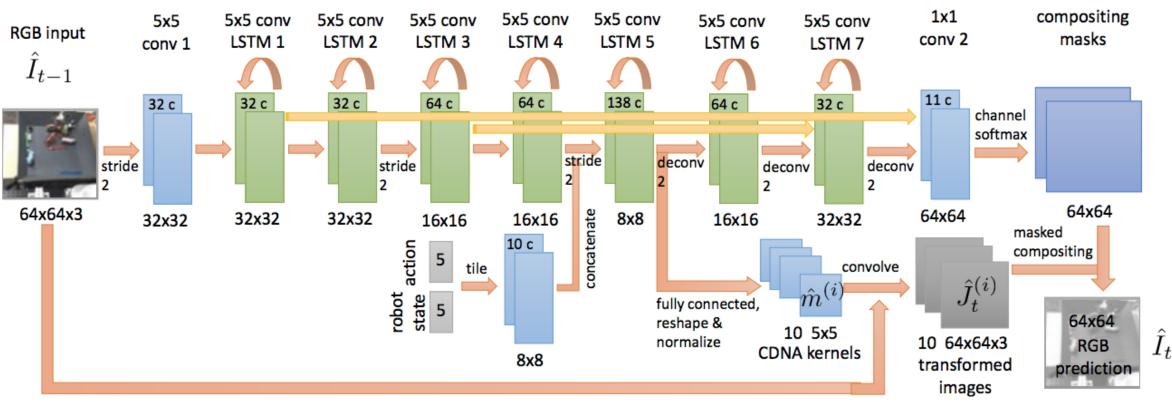
action-conditioned multi-frame video prediction via flow prediction



- feed back model's predictions for multi-frame prediction
- trained with I₂ loss

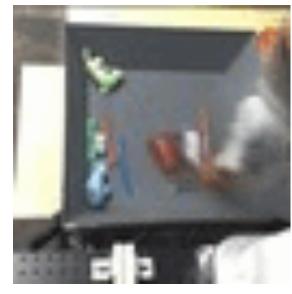
Train predictive model

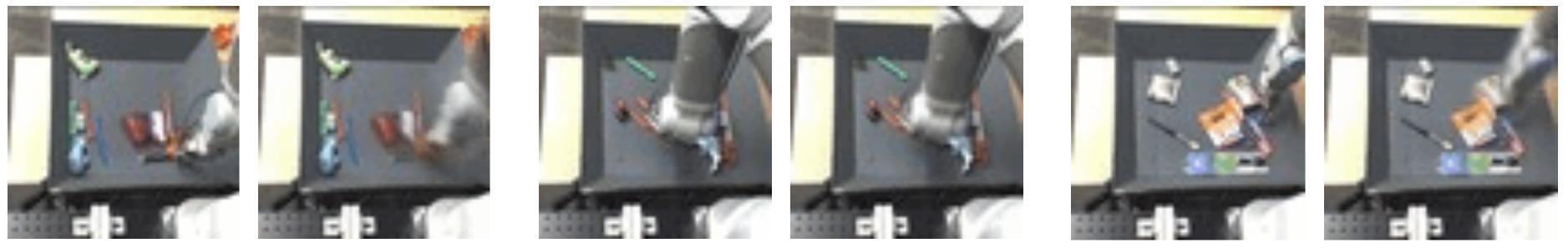
convolutional LSTMs



action-conditioned stochastic flow prediction

evaluate on held-out objects

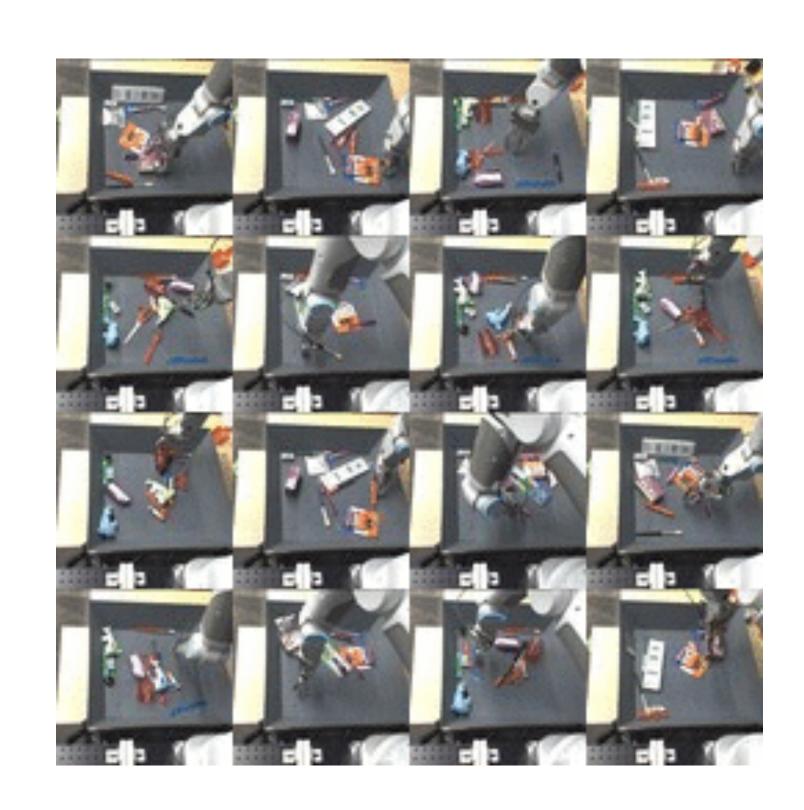




Train predictive model

Finn et al., '16

Kalchbrenner et al., '16



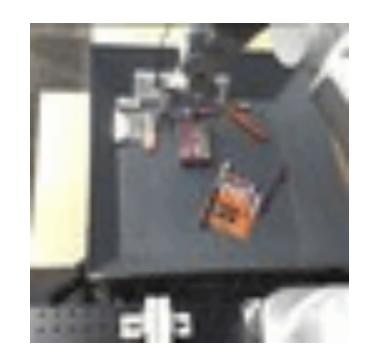
Are these predictions good? accurate? useful?

What is prediction good for?

action magnitude: 0x 0.5x 1x 1.5x

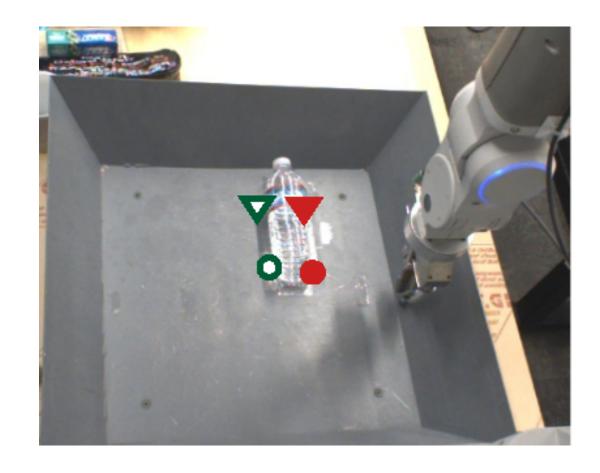
Planning with Visual Foresight (MPC)

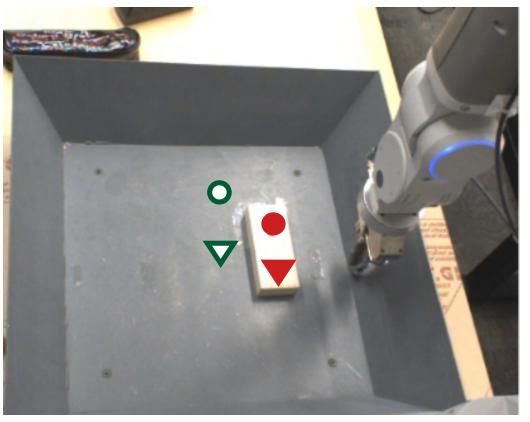
- 1. Sample N potential action sequences
- 2. Predict the future for each action sequence
- 3. Pick best future & execute corresponding action
- 4. Repeat 1-3 to replan in real time

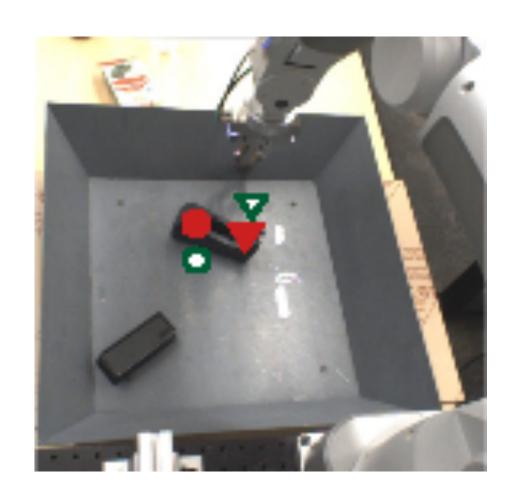


Which future is the best one?

Specify goal by selecting where pixels should move.







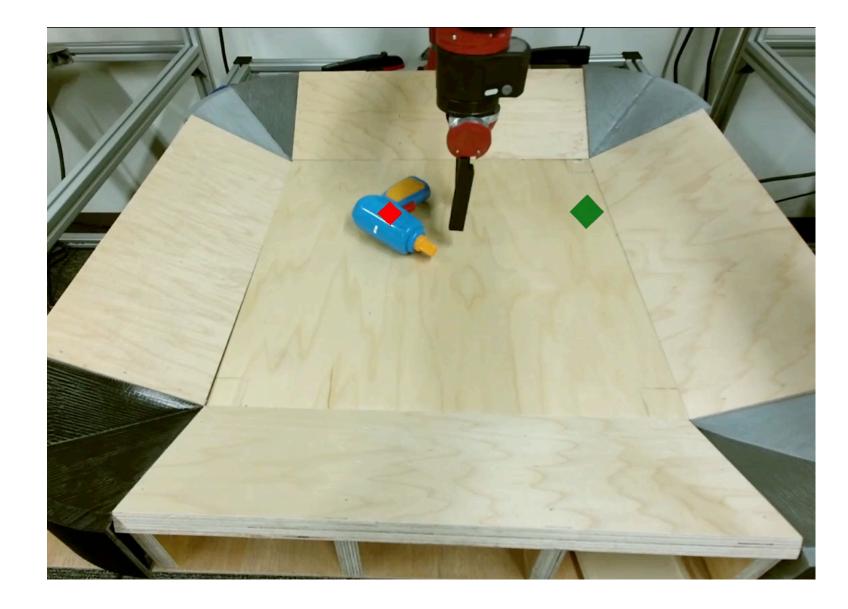
Select future with maximal probability of pixels reaching their respective goals.

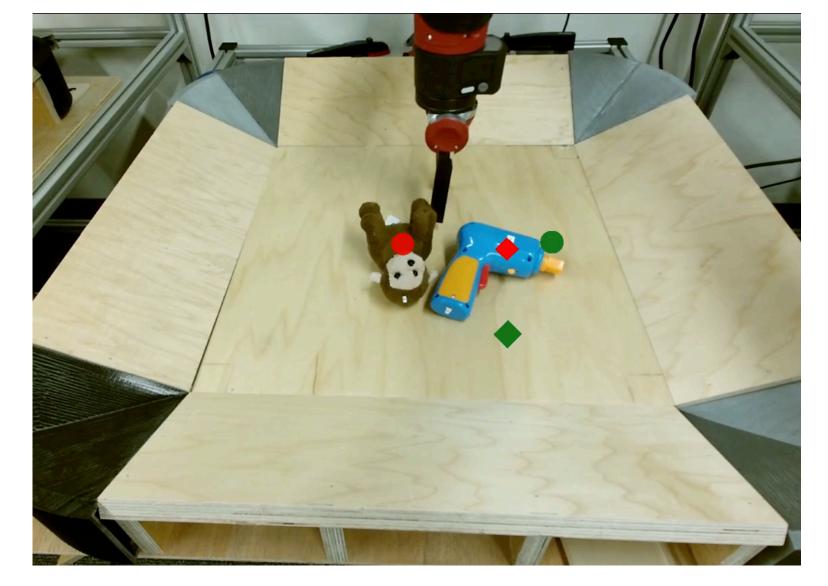
How it works

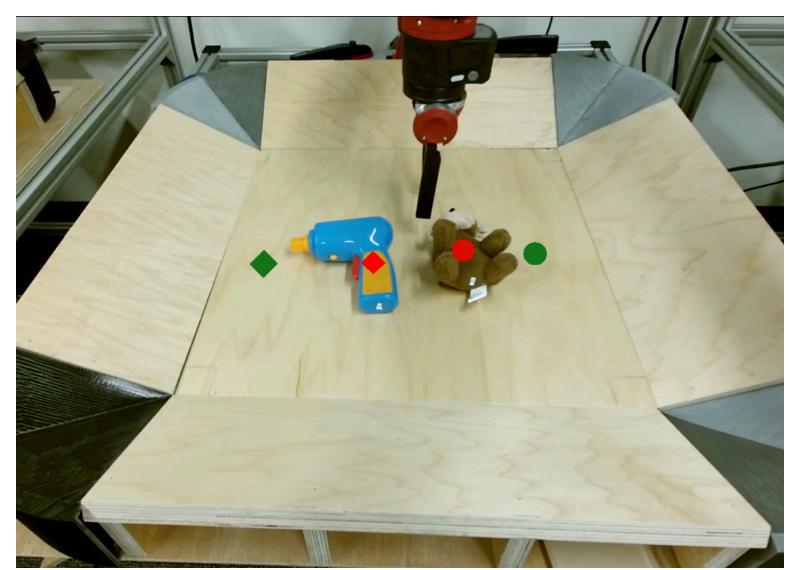
<2 days of unsupervised robot time

Only human involvement: programming initial motions and providing objects to play with.

Modeling directly in observation space



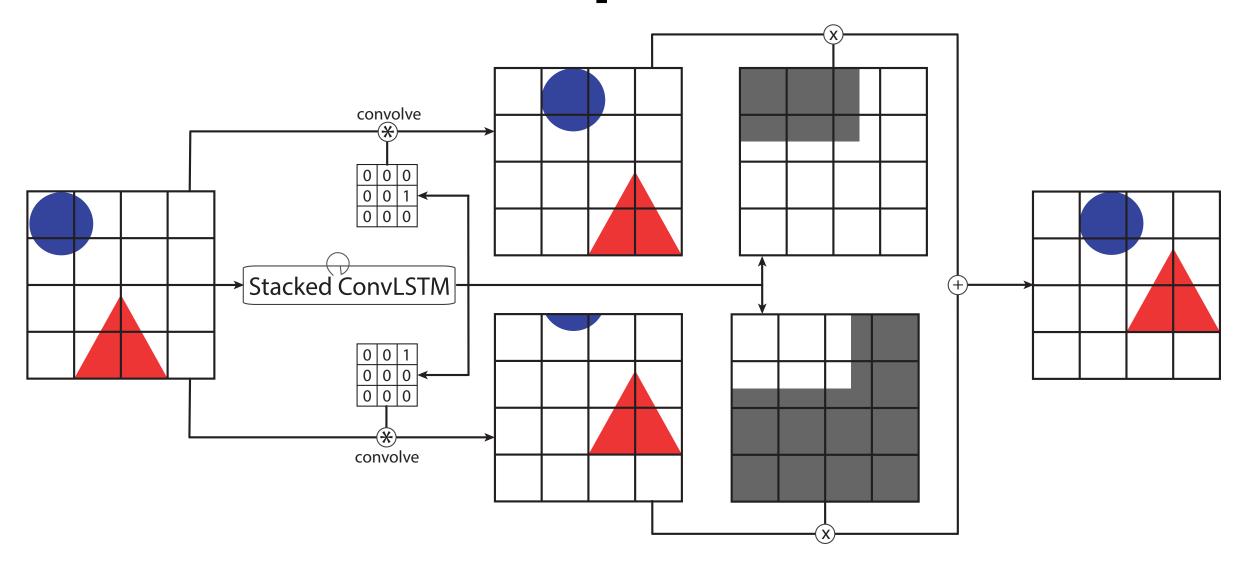


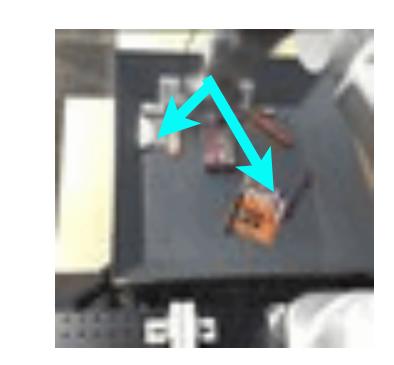


model can be reused for different tasks

Ebert et al. '17

action-conditioned multi-frame video prediction via flow prediction





Pros:

- + Real images
- + Very limited human involvement (self-supervised)
- + More efficient than single-task model-free learning

Cons:

- Despite real images, limited background variability
- Can't [yet] handle as complex skills as model-free methods
- Compute intensive at test-time

Outline

- 1. Models in latent space
- 2. Models directly in image space
- 3. Inverse models
- 4. Predict alternative quantities

Inverse Models

Thought exercise revisited:

Why reconstruct the image?

Learn embedding via inverse model $f(\mathbf{o}_t, \mathbf{o}_{t+1}) = \mathbf{u}_t$

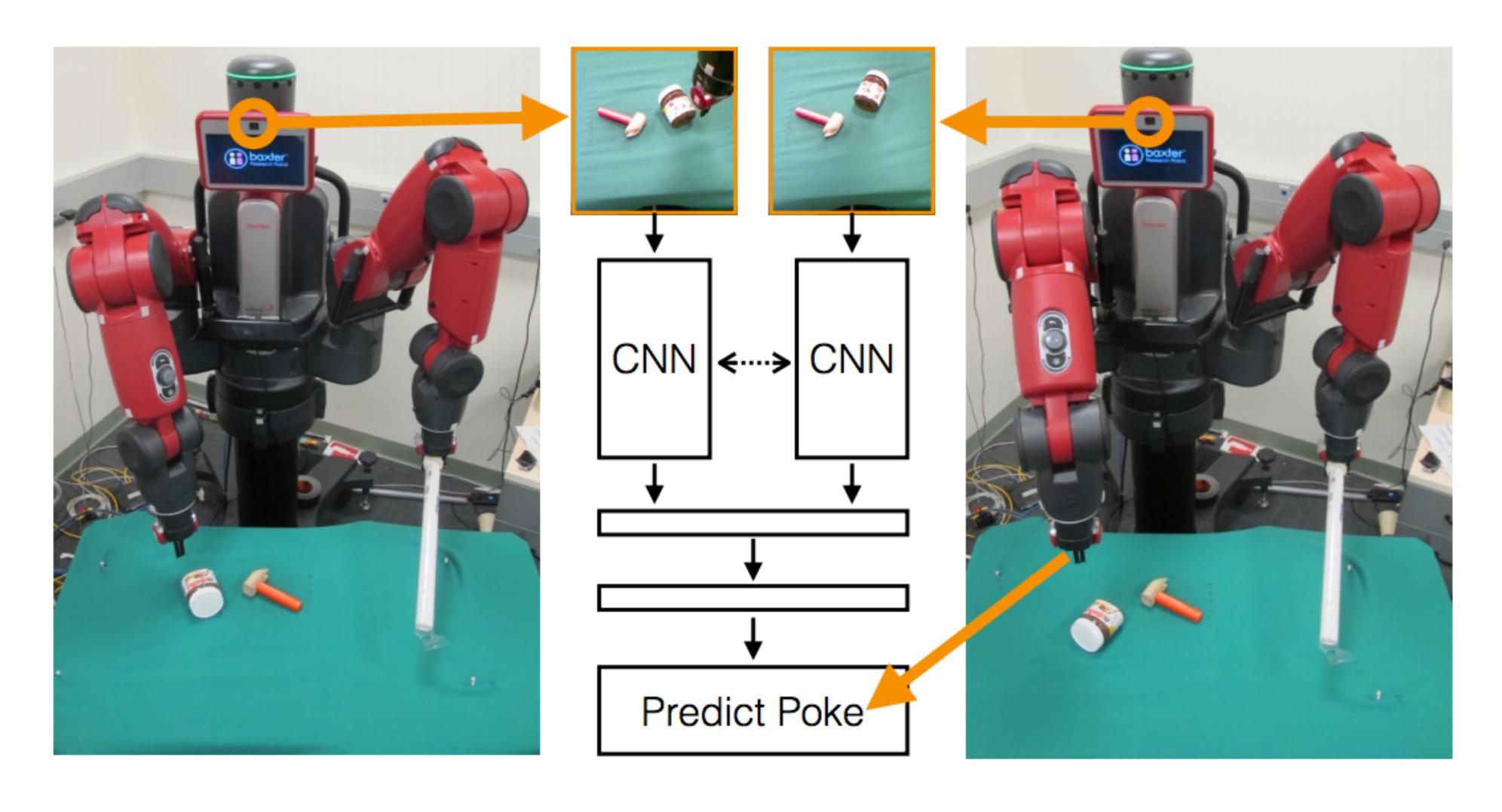
Inverse Models

Learn embedding via inverse model $f(\mathbf{o}_t, \mathbf{o}_{t+1}) = \mathbf{u}_t$

Learning to Poke by Poking: Experiential Learning of Intuitive Physics

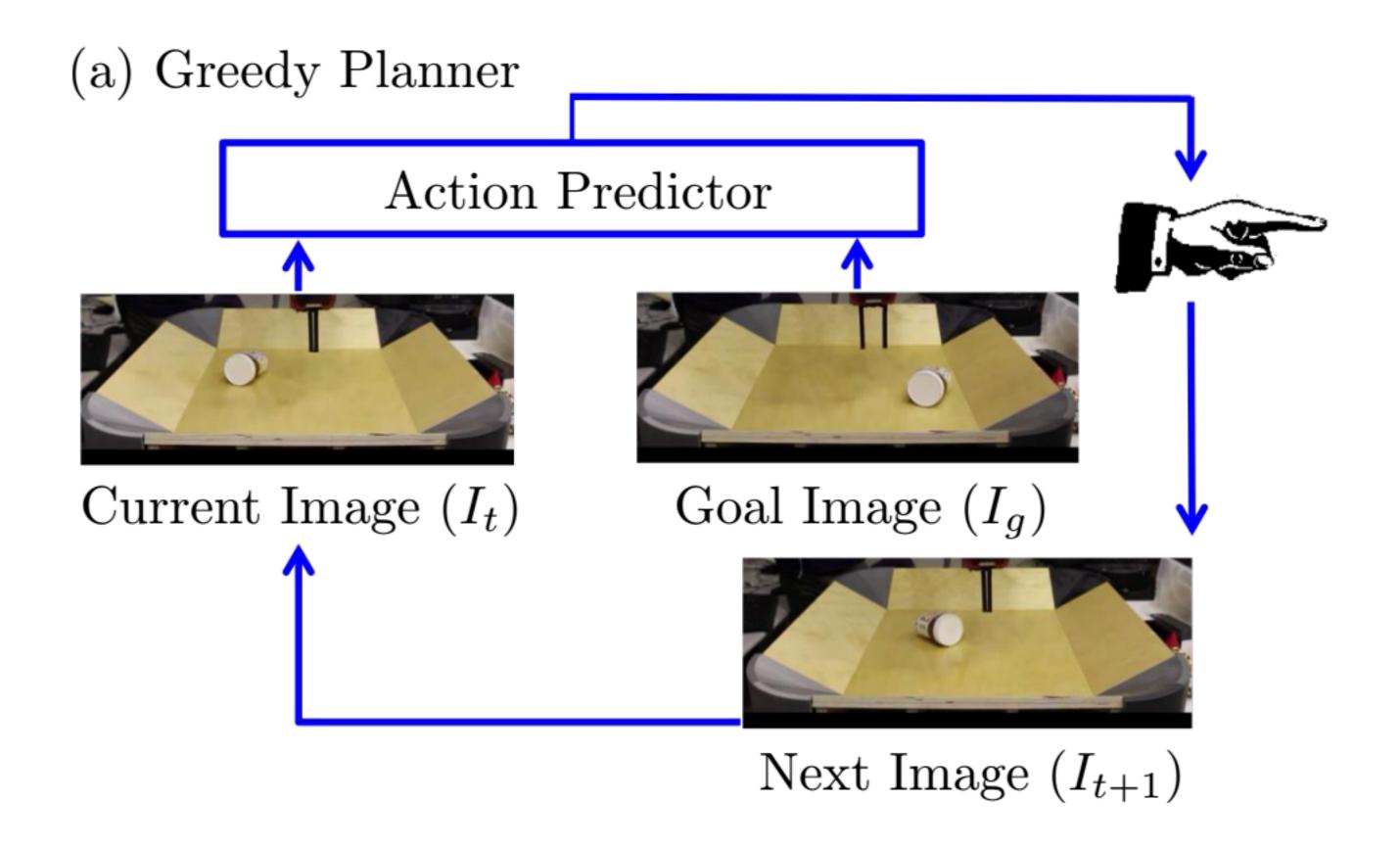
Pulkit Agrawal* Ashvin Nair* Pieter Abbeel Jitendra Malik Sergey Levine
Berkeley Artificial Intelligence Research Laboratory (BAIR)
University of California Berkeley

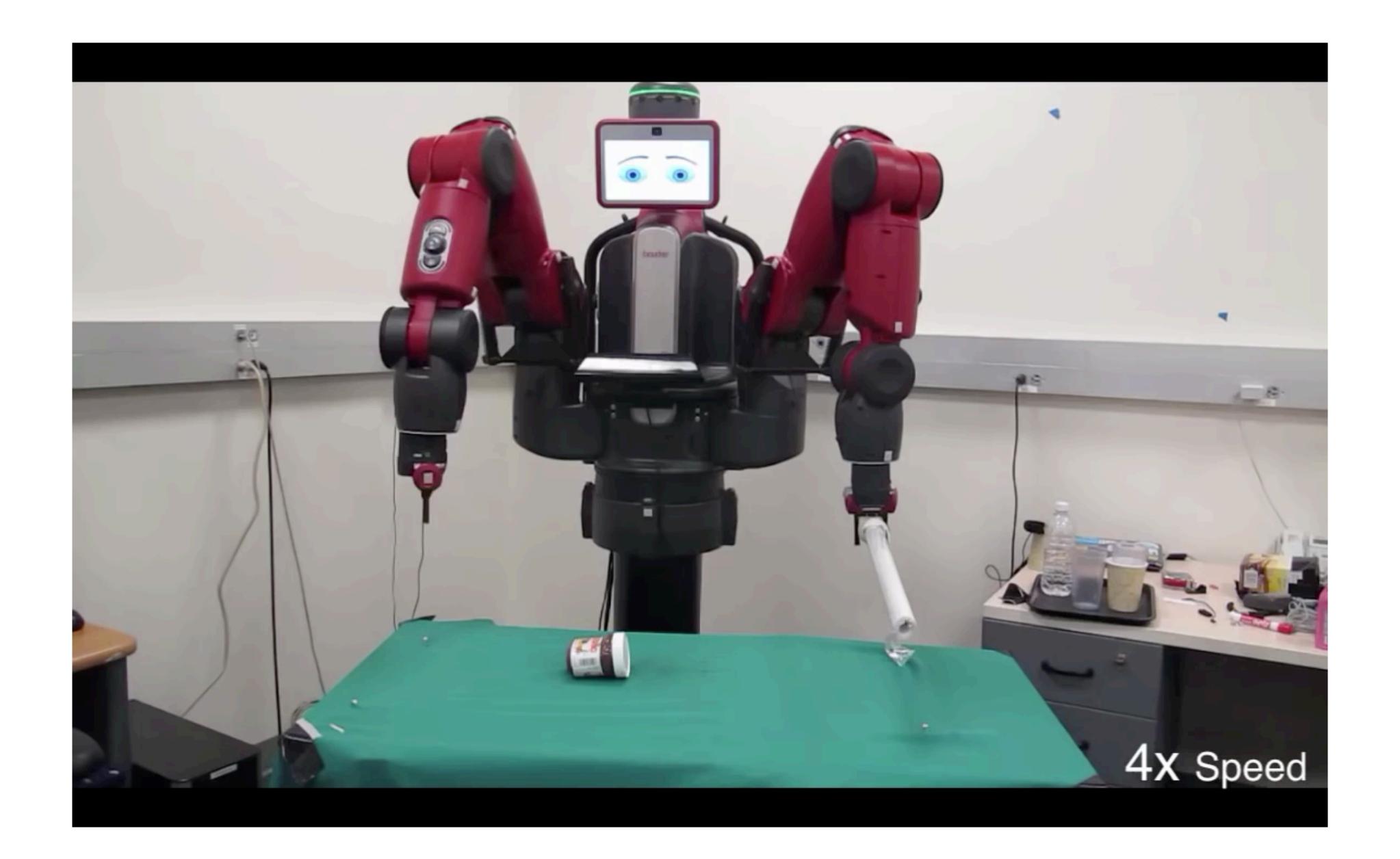
Learn embedding via inverse model $f(\mathbf{o}_t, \mathbf{o}_{t+1}) = \mathbf{u}_t$



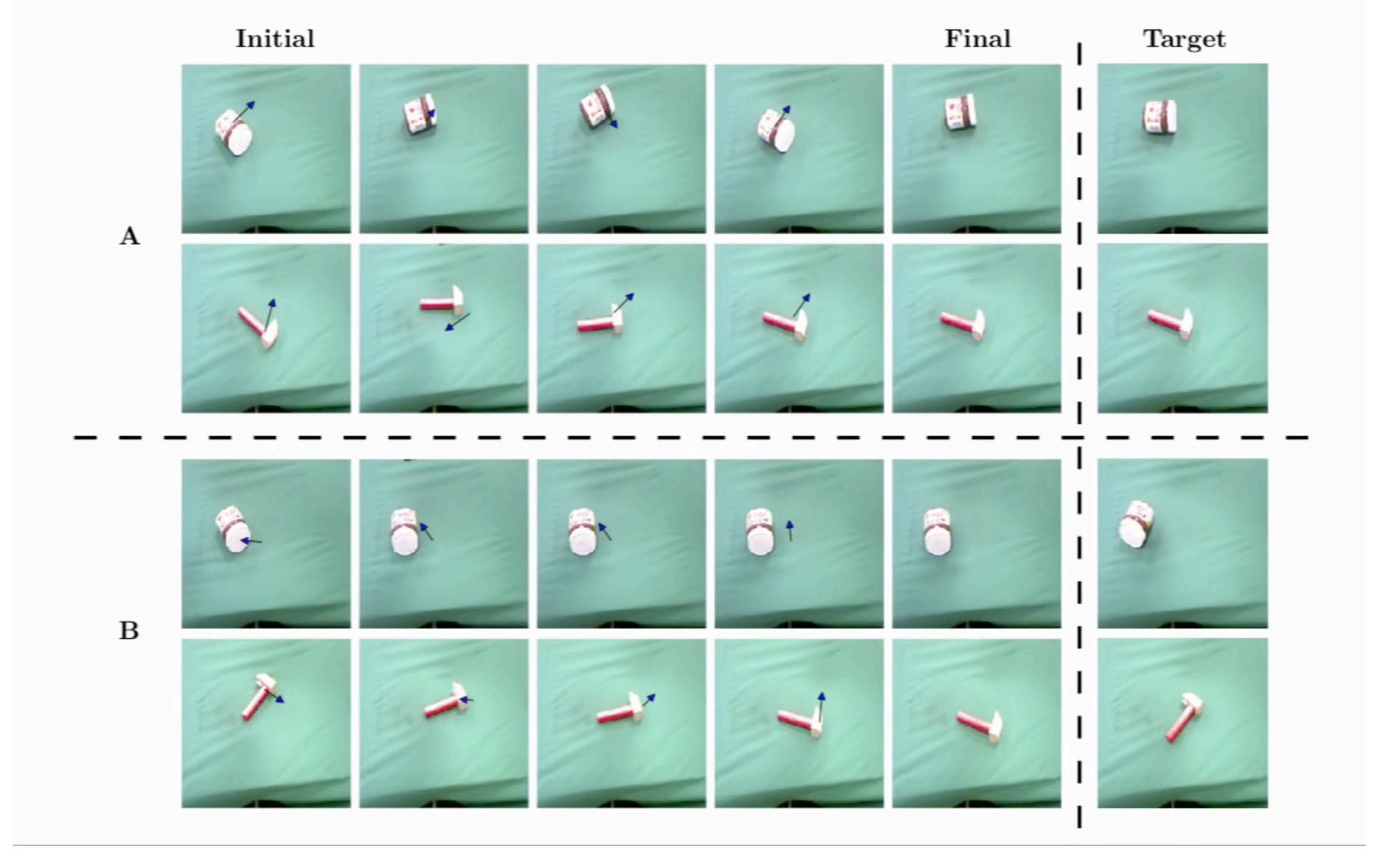
regularize embedding with forward model

Learn embedding via inverse model $f(\mathbf{o}_t, \mathbf{o}_{t+1}) = \mathbf{u}_t$ Greedily plan with inverse model and image of goal

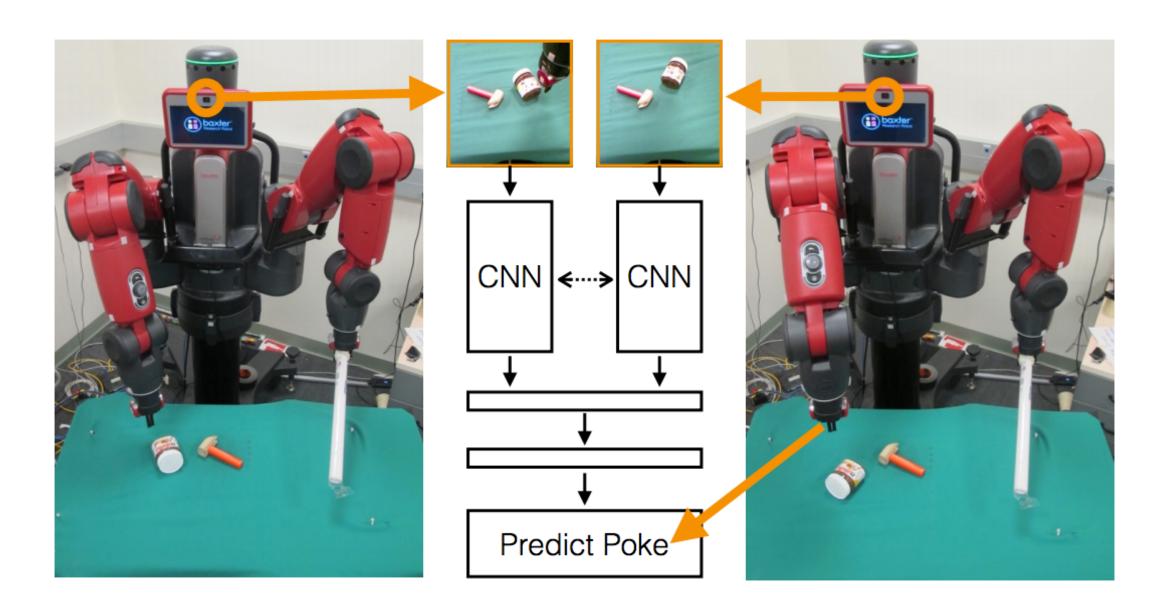




Qualitative Results



Learn embedding via inverse model $f(\mathbf{o}_t, \mathbf{o}_{t+1}) = \mathbf{u}_t$



Pros:

- + Very limited human involvement (self-supervised)
- + Don't have to reconstruct image

Cons:

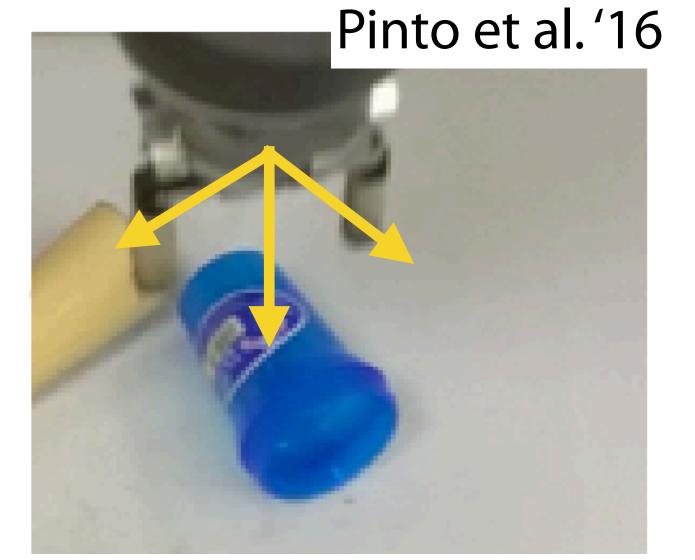
- Can't plan with inverse model
- Inverse model objective just cares about action

Outline

- 1. Models in latent space
- 2. Models directly in image space
- 3. Inverse models
- 4. Predict alternative quantities

Predict alternative quantities

If I take a set of actions:



Will I successfully grasp?

Dosovitskiy & Koltun '17

What will health/damage/etc. be?

Pros:

+ Only predict task-relevant quantities!

Cons:

- Need to manually pick quantities, must be able to directly observe them

Advanced Model Learning Takeaways

- Learning the right features is important
- Need to think about reward/objective when using models of observations

Next week: Learning rewards from demonstrations

Model-Based vs. Model-Free Learning

Models:

- + Easy to collect data in a scalable way (self-supervised)
- + Possibility to transfer across tasks
- + Typically require a smaller quantity of supervised data
- Models don't optimize for task performance
- Sometimes harder to learn than a policy
- Often need assumptions to learn complex skills (continuity, resets)

Model-Free:

- + Makes little assumptions beyond a reward function
- + Effective for learning complex policies
- Require a lot of experience (slower)
- Not transferable across tasks

Ultimately we will want both!