DAGGER and Friends

References:

1. A Reduction of Imitation Learning and Structured Prediction to
No-Regret Online Learning, Ross, Gordon & Bagnell (2010).
DAGGER algorithm

2. Reinforcement and Imitation Learning via Interactive No-Regret
Learning Ross & Bagnell (2014). AGGREVATE algorithm

3. Deep Learning for Real-Time Atari Game Play Using Offline
Monte-Carlo Tree Search Planning Guo et al. (2014)

4. SEARN In Practice Daume et al. (2006)

John Schulman
2015/10/5

Data Mismatch Problem

Expert trajectory

Learned Policy

No data on 5, _
how to recover i Y J

Data Mismatch Problem

supervised learning +
control (NAIVE)

supervised learning

Compounding Errors

/error at time t
with probability €

E[Total errors] = €(T + (T-1) + (T-2) + ...+ 1) =< g1?

*errors at subsequent
T - ttimesteps

-orward Algorithm

Initialize 7w, m9, ..., mp arbitrarily.
fort=1to T do
Sample multiple t-step trajectories by executing the policies 71, m9, ..., m_1, starting

from initial states drawn from the initial state distribution.
Query expert for states encountered at time step ¢.
Get dataset D = {(s¢, m*(s¢))} of states, actions taken by expert at time step t.
Train classifier m; = argmin .y) s o)ep 408, a,).
end for
Return non-stationary policy 7, such that at time ¢ in state s, w(s,t) = m¢(s)

E[total errors] s €T

DAGGER

Execute current policy and Query Expert
New Data
Steering

from expert ‘e-i- \ g
t" \ =

Aggregate

Dataset All previous data h

@

Supervised Learning

—
Rl -

DAGGER

Initialize D « 0.
Initialize m to any policy in II.
for:=1to N do
Let M, — 67;71'* + (1 — ﬂz)ﬁ'z
Sample T'-step trajectories using ;.
Get dataset D; = {(s,n"(s))} of visited states by m; and actions given by expert.
Aggregate datasets: D < D | JD;.
Train classifier 7;11 on D (or use online learner to get ;11 given new data D;).
end for
Return best m; on validation.

AGGREVATE

Initialize D « 0.
Initialize m to any policy in II.
for:=1to N do
Let m; = B;7™ + (1 — ﬂz)ﬁ‘z
Sample T'-step trajectories using ;.
Get dataset D; = {(s,n"(s))} of visited states by m; and actions given by expert.
Aggregate datasets: D « D | JD;.
Train classifier 7;11 on D (§r use online learner to get ;11 given new data D;).
end for
Return best m; on validation.

A*(S,a) fOI’ a” ;e/&*miﬂimize
actions a 0 A7(Sn,TT(Sn))

—mpirical Demonstrations

e & b ._
X . . il e
e

A
K .1.-"4
% %

Online Learning + Regret

Learn from a stream of data, might be non-stationary or adversarial
At nth step, algorithm chooses 1, receives l0oss Ln(1h)

Want to minimize 2n Ln(7h)

Regret: 2n Ln(1h) - ming 2n La(1T)

e e.9g. for convex L with online gradient descent, one can show that
total regret ~ /T

Great review: Shalev-Shwartz, Shai, and Yoram Singer. "Online
learning: Theory, algorithms, and applications.” (2007).

AGGREVATE: Theory

Z AT (s, at)]

Z AT (5t W(St))]

n(m) —n(r”) = Erx

Ln(ﬂ-) - 4:’7';7%

Suboptimality of nth policy: Ln (Wn)

AGGREVATE (B=0)

e At nth step, sample trajectories using 1

» suboptimality is Ln(1n)

* Update policy based on new data to get 1.1

* £.9., take M1 = argming 2n La(1)

AGGREVATE (B=0)

 Now, consider m1, obtained by randomly sampling nin {1,2,...,N}
1 N
0(®) = n(r") = = > Ln(mn)
n=1

* => Suboptimality is bounded by regret of learning algorithm

AGGREVATE (B=0)

o Sample trajectories

Application to Atari

Deep Learning for Real-Time Atari Game Play
Using Offline Monte-Carlo Tree Search Planning

Xiaoxiao Guo Satinder Singh
Computer Science and Eng. Computer Science and Eng.
University of Michigan University of Michigan
guoxiaoW@umich.edu baveja@umich.edu

Honglak Lee Richard Lewis Xiaoshi Wang
Computer Science and Eng. Department of Psychology Computer Science and Eng.
University of Michigan University of Michigan University of Michigan
honglak@umich.edu rickl@umich.edu xlaoshiw@umich.edu

NIPS 2014
Monte Carlo Tree Search (UCT) + ConvNet Policy/Classifier

MONTE CARLO [REE SEARCH

Hepeated X times

Selection - Expansion - Simulation —— Backpropagation

g

Coulom, Rémi. "Efficient selectivity and backup operators in Monte-Carlo tree search.” Computers and games.
Springer Berlin Heidelberg, 2007. 72-83.

Figure om Chaslot (2006)

Kocsis, Levente, and Csaba Szepesvari. "Bandit based monte-carlo planning.” Machine Learning: ECML 2006.
Springer Berlin Heidelberg, 2006. 282-293. (UCT Algorithm)

Kearns, Michael, Yishay Mansour, and Andrew Y. Ng. "A sparse sampling algorithm for near-optimal planning in large
Markov decision processes.” Machine Learning 49.2-3 (2002): 193-208.

Application to Atari

frame: t-3

“submarine”

“enemy+diver”

cool finding — low level filters show game objects

Application to Atari

Agent B.Rider Breakout Enduro Pong Q*bert Seaquest S.Invaders
DQN 4092 168 470 20 1952 1705 581
-best 5184 225 661 21 4500 1740 1075
UCC 5342 (20) 175(5.63) 558 (14) 19 (0.3) 11574(44) 22773 (23) 672 (5.3)
-best 10514 351 042 21 29725 5100 1200
-greedy 5676 269 692 21 19890 27760 680
UCC-I 5388 (4.6) 215(6.69) 601 (11) 19 (0.14) 13189 (35.3) 2701 (6.09) 670 (4.24)
-best 10732 413 1026 21 29900 6100 910
-greedy 5702 380 741 21 20025 2995 692
UCR 2405 (12) 143 (6.7) 566 (10.2) 19 (0.3) 12755 (40.7) 1024 (13.8) 441 (8.1)

Table 2: Performance (game scores) of the off-line UCT game playing agent.

Agent B.Rider Breakout Enduro Pong Q%bert Seaquest S.Invaders
UCT 7233 406 788 21 18850 3257 2354

put... 800 games * 1000 actions/game * 10000 rollouts/
action * 300 steps/rollout = 2.4e12 steps

