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Data Mismatch Problem
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Compounding Errors

/error at time t
with probability €

E[Total errors] = €(T + (T-1) + (T-2) + ...+ 1) =< g1?

*errors at subsequent
T - ttimesteps




-orward Algorithm

Initialize 7w, m9, ..., mp arbitrarily.
fort=1to T do
Sample multiple t-step trajectories by executing the policies 71, m9, ..., m_1, starting

from initial states drawn from the initial state distribution.
Query expert for states encountered at time step ¢.
Get dataset D = {(s¢, m*(s¢))} of states, actions taken by expert at time step t.
Train classifier m; = argmin .y ) s o)ep 408, a, ).
end for
Return non-stationary policy 7, such that at time ¢ in state s, w(s,t) = m¢(s)

E[total errors] s €T
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DAGGER

Initialize D « 0.
Initialize m to any policy in II.
for:=1to N do
Let M, — 67;71'* + (1 — ﬂz)ﬁ'z
Sample T'-step trajectories using ;.
Get dataset D; = {(s,n"(s))} of visited states by m; and actions given by expert.
Aggregate datasets: D < D | JD;.
Train classifier 7;11 on D (or use online learner to get ;11 given new data D;).
end for
Return best m; on validation.




AGGREVATE

Initialize D « 0.
Initialize m to any policy in II.
for:=1to N do
Let m; = B;7™ + (1 — ﬂz)ﬁ‘z
Sample T'-step trajectories using ;.
Get dataset D; = {(s,n"(s))} of visited states by m; and actions given by expert.
Aggregate datasets: D « D | JD;.
Train classifier 7;11 on D (§r use online learner to get ;11 given new data D;).
end for
Return best m; on validation.

A*(S,a) fOI’ a” ;e/&*miﬂimize
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Online Learning + Regret

Learn from a stream of data, might be non-stationary or adversarial
At nth step, algorithm chooses 1, receives l0oss Ln(1h)

Want to minimize 2n Ln(7h)

Regret: 2n Ln(1h) - ming 2n La(1T)

e e.9g. for convex L with online gradient descent, one can show that
total regret ~ /T

Great review: Shalev-Shwartz, Shai, and Yoram Singer. "Online
learning: Theory, algorithms, and applications.” (2007).



AGGREVATE: Theory

Z AT (s, at)]

Z AT (5t W(St))]

n(m) —n(r”) = Erx

Ln(ﬂ-) - 4:’7';7%

Suboptimality of nth policy: Ln (Wn)



AGGREVATE (B=0)

e At nth step, sample trajectories using 1

» suboptimality is Ln(1n)

* Update policy based on new data to get 1.1

* £.9., take M1 = argming 2n La(1)



AGGREVATE (B=0)

 Now, consider m1, obtained by randomly sampling nin {1,2,...,N}
1 N
0(®) = n(r") = = > Ln(mn)
n=1

* => Suboptimality is bounded by regret of learning algorithm



AGGREVATE (B=0)

o Sample trajectories



Application to Atari
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MONTE CARLO [REE SEARCH

Hepeated X times

Selection - Expansion - Simulation —— Backpropagation
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Application to Atari

frame: t-3

“submarine”

“enemy+diver”

cool finding — low level filters show game objects



Application to Atari

Agent B.Rider Breakout Enduro Pong Q*bert Seaquest S.Invaders
DQN 4092 168 470 20 1952 1705 581
-best 5184 225 661 21 4500 1740 1075
UCC 5342 (20)  175(5.63) 558 (14) 19 (0.3) 11574(44) 22773 (23) 672 (5.3)
-best 10514 351 042 21 29725 5100 1200
-greedy 5676 269 692 21 19890 27760 680
UCC-I 5388 (4.6) 215(6.69) 601 (11) 19 (0.14) 13189 (35.3) 2701 (6.09) 670 (4.24)
-best 10732 413 1026 21 29900 6100 910
-greedy 5702 380 741 21 20025 2995 692
UCR 2405 (12) 143 (6.7) 566 (10.2) 19 (0.3) 12755 (40.7) 1024 (13.8) 441 (8.1)

Table 2: Performance (game scores) of the off-line UCT game playing agent.

Agent B.Rider Breakout Enduro Pong Q%bert Seaquest S.Invaders
UCT 7233 406 788 21 18850 3257 2354

put... 800 games * 1000 actions/game * 10000 rollouts/
action * 300 steps/rollout = 2.4e12 steps



