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What is the exploration problem?

• Given a long-lived agent (or long-running learning algorithm), how to 
balance exploration and exploitation to maximize long-term rewards 

• How to search through the space of possible strategies of the agent to 
avoid getting stuck in local optima of behavior



Problem Settings
Multi-Armed Bandits

Contextual Bandits

Finite MDP 
(where optimal 

planning is free)

Large/infinite MDP, 
running online PG or 

ADP alg

theoretically 
tractable 

theoretically 
intractable



Problem Settings
Multi-Armed Bandits

Contextual Bandits

Finite MDP 
(where optimal 

planning is free)

Large/infinite MDP, 
running online PG or 

ADP alg

Themes: 
- Use optimistic value estimates 
- Thompson sampling

Themes: 
- Optimistic dynamics model 
- Exploration bonuses

Themes: 
- Optimistic dynamics model 
- Optimistic values 
- Thompson sampling 
- Intrinsic rewards / intrinsic 

motivation



Bandit Problems

“bandit” = slot machine 
pick the best one



Bandit Problems
• k arms, n rounds, n ≥ k 

• Unknown: probability distributions p(R | a) for each action 

• For t = 1,2, … 

• agent chooses at ∈ {1,2,…,k} 

• environment provides reward Rt according to p(R | a) 

• Let Q(a) = E[R | a] 

• Goal: maximize cumulative reward, equivalently, minimize regret 

• Regretn := Σt  (Q* - Q(at))

Bubeck, Sébastien, and Nicolo Cesa-Bianchi. "Regret analysis of stochastic and 
nonstochastic multi-armed bandit problems." arXiv preprint arXiv:1204.5721 (2012).Review:



UCB-style algorithms

• “Upper Confidence Bound”, not UC Berkeley unfortunately 

• Pick the arm that maximizes mean + const * stdev 

• I.e., best return if we’re a bit optimistic 

• Favor high expected return and high variance 

• Logarithmic regret (which is optimal)

Peter Auer, Nicolò Cesa-Bianchi and Paul Fischer, Finite-Time Analysis of the 
Multi-Armed Bandit Problem, Mach. Learn., 47 (2002), 235–256



Probability Matching / Posterior Sampling

• Probability matching - pull lever with probability that it’s the optimal 
one 

• Posterior (Thompson) sampling - sample from posterior distribution 
over model, then choose optimal action according to that sample

 Chapelle O. and Li, L. "An Empirical Evaluation of Thompson Sampling". NIPS, 2011
Daniel Russo, Benjamin Van Roy (2014) Learning to Optimize via Posterior Sampling. Mathematics of Operations Research



Contextual Bandits
• Each timestep, we also get a “context” st and reward follows 

distribution P(R | st, at) 

• unlike in MDP, st does not depend on history 

• For t = 1,2, … 

• environment provides context st 

• agent chooses at ∈ {1,2,…,k} 

• environment provides reward Rt according to p(R | at)



Applications of Bandits

• Originally considered by Allied scientists in World War II, it proved so 
intractable that, according to Peter Whittle, the problem was proposed to 
be dropped over Germany so that German scientists "could also waste 
their time on it” [1] 

• Ads and recommendation engines

[1] wikipedia, Multi-Arm Bandits
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be viewed as a non-stationary policy. In our notation, this policy has expected value

V A(ct), where A is the learning algorithm.

Definition 1 (Kakade, 2003) Let c = (s
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, . . .) be a path generated by

executing an algorithm A in an MDP M . For any fixed ≤ > 0, the sample complexity

of exploration (sample complexity, for short) of A with respect to c is the number

of timesteps t such that the policy at time t, At, is not ≤-optimal from the current state,

st at time t (formally, V At(st) < V §(st)° ≤).

In other words, the sample complexity is the number of timesteps, over the course of

any run, for which the learning algorithm A is not executing an ≤-optimal policy from

its current state. A is PAC in this setting if its sample complexity can be bounded by

a number polynomial in the relevant quantities with high probability. Kakade showed

that the Rmax algorithm (Brafman & Tennenholtz, 2002) satisfies this condition. We

will use Kakade’s (2003) definition as the standard.

Definition 2 An algorithm A is said to be an e±cient PAC-MDP (Probably Ap-

proximately Correct in Markov Decision Processes) algorithm if, for any ≤ and ±, the

per-step computational complexity and the sample complexity of A are less than some

polynomial in the relevant quantities (|S|, |A|, 1/≤, 1/±, 1/(1° ∞)), with probability at

least 1° ±. For convenience, we may also say that A is PAC-MDP.

One thing to note is that we only restrict a PAC-MDP algorithm from behaving

poorly (non-≤-optimally) on more than a small (polynomially) number of timesteps.

We don’t place any limitations on when the algorithm acts poorly. This is in contrast

to the original PAC notion which is more “oÆ-line” in that it requires the algorithm to

make all its mistakes ahead of time before identifying a near-optimal policy.

This diÆerence is necessary. In any given MDP it may take an arbitrarily long

time to reach some section of the state space. Once that section is reached we expect

any learning algorithm to make some mistakes. Thus, we can hope only to bound

the number of mistakes, but can say nothing about when they happen. The first two

performance metrics above were able to sidestep this issue somewhat. In Fiechter’s

Strehl, PROBABLY APPROXIMATELY CORRECT (PAC) EXPLORATION IN REINFORCEMENT LEARNING, 2007  
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2. We present two new versions of the Model-Based Interval Estimation (MBIE)

algorithm and prove that they are both PAC-MDP. These algorithms are provably

more e±cient any than previously studied RL algorithms.

3. We prove that many model-based algorithms (including R-MAX and MBIE) can

be modified so that their worst-case per-step computational complexity is vastly

improved without sacrificing their attractive theoretical guarantees.

4. We show that it is possible to obtain PAC-MDP bounds with a model-free algo-

rithm called Delayed Q-learning.

Table

Here’s a table summarizing the PAC-MDP sample complexity and per-step computa-

tional complexity bounds that we will prove:

Summary Table

Algorithm Comp. Complexity Space Complexity Sample Complexity

Q-Learning O(ln(A)) O(SA) Unknown,

Possibly EXP

DQL O(ln(A)) O(SA) Õ
≥

SA
≤4(1°∞)

8

¥

DQL-IE O(ln(A)) O(SA) Õ
≥

SA
≤4(1°∞)

8

¥

RTDP-RMAX O(S + ln(A)) O(S2A) Õ
≥

S2A
≤3(1°∞)

6

¥

RTDP-IE O(S + ln(A)) O(S2A) Õ
≥

S2A
≤3(1°∞)

6

¥

RMAX O

µ

SA(S+ln(A)) ln

1

≤(1°∞)

1°∞

∂

O(S2A) Õ
≥

S2A
≤3(1°∞)

6

¥

MBIE-EB O

µ

SA(S+ln(A)) ln

1

≤(1°∞)

1°∞

∂

O(S2A) Õ
≥

S2A
≤3(1°∞)

6

¥

We’ve used the abbreviations DQL and DQL-IE for the Delayed Q-learning and

the Delayed Q-learning with IE algorithms, respectively. The second column shows the

per-timestep computational complexity of the algorithms. The last column shows the

best known PAC-MDP sample complexity bounds for the algorithms. It is worth em-

phasizing, especially in reference to sample complexity, is that these are upper bounds.

What should not be concluded from the table is that the Delayed Q-learning variants

Delayed Q-Learning 
no epsilon greedy! 

add exploration bonus to Q-
values

All insufficiently 
visited states are  
highly rewarding



Optimistic Initial Model

• Make optimistic assumption about dynamics model of MDP and 
plan according to it 

• Szita & Lorincz alg: Initially assume that every state-action pair has 
deterministic transition to “Garden of Eden State” with maximal 
reward. Also see R-MAX.

Szita, István, and András Lőrincz. "The many faces of 
optimism: a unifying approach." ICML 2008.

Moldovan, Teodor Mihai, and Pieter Abbeel. "Safe exploration in 
markov decision processes." arXiv preprint arXiv:1205.4810 (2012).



Optimistic Initial Value

• Initialize Q-values with large positive value 

• Heuristic method inspired by OIM methods



MDPs — examples

Near-Bayesian Exploration in Polynomial Time

then with probability at least δ0 = 0.15, action a2 will
be preferred by the algorithm over action a1. Once this
occurs, the algorithm will never opt to select action a1

(since a2 is known, and already has no exploration
bonus), so for any ϵ ≤ ϵ0, the algorithm will be more
than ϵ sub-optimal for an infinite number of steps.

Finally, we also note that we can easily transform this
domain to an MDP with known rewards but unknown
transitions by considering a three state MDP, with
transition probabilities and rewards

P (s2|s1, a1) = 3/4

P (s3|s1, a1) = 1/4

P (s1|s1, a2) = 1

P (s1|s2:3, a1:2) = 1

R(s2, a1:2) = 1

R(s3, a1:2) = 0

R(s1, a2) = 3/4 − ϵ0.

5. Simulated Domain

In this section we present empirical results for BEB
and other algorithms on a simple chain domain from
the Bayesian exploration literature (Strens, 2000;
Poupart et al., 2006), shown in Figure 1. We stress
that the results here are not intended as a rigorous
evaluation of the different methods, since the domain
is extremely small-scale. Nonetheless, the results il-
lustrate that the characteristics suggested by the the-
ory do manifest themselves in practice, at least in this
small-scale setting.

Figure 2 shows the average total reward versus time
step for several different algorithms. These results
illustrate several points. First, the results show, as
suggested by the theory, that BEB can outperform
PAC-MDP algorithms (in this case, MBIE-EB), due
to it’s greedier exploration strategy. Second, the value
of β required by Theorem 1 is typically much larger
than what is best in practice. This is a common trend
for such algorithms, so for both BEB and MBIE-EB
we evaluated a wide range of values for β and chose
the best for each (the same evaluation strategy was
used by the authors of MBIE-EB (Strehl & Littman,
2008a)). Thus, while the constant factors in the theo-
retical results for both BEB and MBIE-EB are less im-
portant from a practical standpoint, the rates implied
by these results — i.e., the 1/n vs. 1/

√
n exploration

rates — do result in empirical differences. Finally, for
this domain, the possibility that BEB converges to a
sub-optimal policy is not a large concern. This is to
be expected, as Theorem 2 analyzes a fairly extreme
setting, and indeed implies only relatively little sub-
optimality, even in the worse case.

Figure 1. Simple chain domain, consisting of five states and
two actions. Arrows indicate transitions and rewards for
the actions, but at each time step the agent performs the
opposite action as intended with probability 0.2. The agent
always starts in state 1, and the horizon is H = 6.
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Figure 2. Performance versus time for different algorithms
on the chain domain, averaged over 500 trials and shown
with 95% confidence intervals.
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Figure 3. Performance versus time for BEB with different
priors on the chain domain, averaged over 500 trials and
shown with 95% confidence intervals.

We also evaluated the significance of the prior distri-
bution on BEB. In Figure 3 we show performance for
BEB with a very small prior, for uniform priors of
varying strength, and for informative priors consisting
of the true transition probabilities. As can be seen,
BEB is fairly insensitive to either small priors, but can
be negatively impacted by a large misspecified prior.
These results are quite intuitive, as such as prior will
greatly decrease the exploration bonus, while provid-
ing a poor model of the environment.

from Kolter & Ng, Near-Bayesian Exploration in Polynomial Time

samples needed ~ 2Length



Start B

MDPs — examples

done
R=-999

R=0 R=1
problematic for  

policy gradient methods



MDPs — examples

Local minima 
policies: 
- lunge forward 
- stand



MDPs — examples

Local minima 
policies: 
- Stay on one side

Breakout



Exploration in Deep RL

• Can’t optimally plan in the MDP, as was assumed by some prior 
algorithms 

• Never reach the same state twice (need metric or some notion of 
“novelty”)



Posterior (Thompson) Sampling

• Learn posterior distribution over Q functions. Sample Q function each 
episode. 

• Papers: 

• Osband, Ian, and Benjamin Van Roy. "Bootstrapped Thompson Sampling 
and Deep Exploration." arXiv preprint arXiv:1507.00300 (2015). 

• Yarin Gail, and Zoubin Ghahramani. "Dropout as a Bayesian 
approximation: Representing model uncertainty in deep learning." arXiv 
preprint arXiv:1506.02142 (2015).



Exploration Bonus via State Novelty

• Stadie, Bradly C., Sergey Levine, and Pieter Abbeel. "Incentivizing Exploration 
In Reinforcement Learning With Deep Predictive Models." arXiv preprint arXiv:
1507.00814 (2015). 

• Pazis, Jason, and Ronald Parr. "PAC Optimal Exploration in Continuous Space 
Markov Decision Processes." AAAI. 2013. 

• Curiosity papers of Schmidhuber et al.



Intrinsic Motivation

• Singh, S. P., Barto, A. G., and Chentanez, N. Intrinsically motivated reinforcement learning. In NIPS, 2005. 

• original ML paper on the topic 

• Oudeyer, Pierre-Yves, and Frederic Kaplan. How can we define intrinsic motivation? 2008. 

• good extensive review 

• Shakir Mohamed and Danilo J. Rezende, Variational Information Maximisation for Intrinsically Motivated Reinforcement Learning, ArXiv 2015. 

• good short review & ideas on empowerment

• Reward functions that can be defined generically and lead to good long-term outcomes for agent 

• encourage visiting novel states 

• encourage safety



Intrinsic Motivation
• Information theoretic intrinsic motivation signals listed by Oudeyer et al: 

• Uncertainty motivation: maximize prediction error / surprise of observations 

• Information gain about uncertain model 

• (see papers by Schmidhuber on “curiosity”, additional ideas on compression) 

• Empowerment — mutual information between action sequence and future state 

• Several other novelty measures 

• Competence based models 

• maximize learning 

• tasks should be hard but not too hard



The End

CuriosityLearning dynamics models

Optimistic dynamics models


